Liang Kun, Wang Rui, Huo Bingbing, Ren Huihui, Li Dingwei, Wang Yan, Tang Yingjie, Chen Yitong, Song Chunyan, Li Fanfan, Ji Botao, Wang Hong, Zhu Bowen
College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China.
Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China.
ACS Nano. 2022 Jun 28;16(6):8651-8661. doi: 10.1021/acsnano.2c00439. Epub 2022 Apr 22.
Optoelectronic synaptic transistors with hybrid heterostructure channels have been extensively developed to construct artificial visual systems, inspired by the human visual system. However, optoelectronic transistors taking full advantages of superior optoelectronic synaptic behaviors, low-cost processes, low-power consumption, and environmental benignity remained a challenge. Herein, we report a fully printed, high-performance optoelectronic synaptic transistor based on hybrid heterostructures of heavy-metal-free InP/ZnSe core/shell quantum dots (QDs) and n-type SnO amorphous oxide semiconductors (AOSs). The elaborately designed heterojunction improves the separation efficiency of photoexcited charges, leading to high photoresponsivity and tunable synaptic weight changes. Under the coordinated modulation of electrical and optical modes, important biological synaptic behaviors, including excitatory postsynaptic current, short/long-term plasticity, and paired-pulse facilitation, were demonstrated with a low power consumption (∼5.6 pJ per event). The InP/ZnSe QD/SnO based artificial vision system illustrated a significantly improved accuracy of 91% in image recognition, compared to that of bare SnO based counterparts (58%). Combining the outstanding synaptic characteristics of both AOS materials and heterojunction structures, this work provides a printable, low-cost, and high-efficiency strategy to achieve advanced optoelectronic synapses for neuromorphic electronics and artificial intelligence.
受人类视觉系统启发,具有混合异质结构通道的光电突触晶体管已被广泛开发用于构建人工视觉系统。然而,要充分利用卓越的光电突触行为、低成本工艺、低功耗和环境友好性的光电晶体管仍然是一个挑战。在此,我们报道了一种基于无重金属的InP/ZnSe核/壳量子点(QD)和n型SnO非晶氧化物半导体(AOS)的混合异质结构的全印刷高性能光电突触晶体管。精心设计的异质结提高了光激发电荷的分离效率,导致高光响应性和可调谐的突触权重变化。在电学和光学模式的协同调制下,展示了重要的生物突触行为,包括兴奋性突触后电流、短期/长期可塑性和双脉冲易化,且功耗低(每次事件约5.6 pJ)。与基于裸SnO的对应物(58%)相比,基于InP/ZnSe QD/SnO的人工视觉系统在图像识别中的准确率显著提高,达到91%。结合AOS材料和异质结结构的出色突触特性,这项工作提供了一种可印刷、低成本且高效的策略,以实现用于神经形态电子学和人工智能的先进光电突触。