Suppr超能文献

一种具有多路率和首次峰时编码的人工视觉神经元。

An artificial visual neuron with multiplexed rate and time-to-first-spike coding.

机构信息

School of Materials Science and Engineering, Zhejiang University, Hangzhou, China.

Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China.

出版信息

Nat Commun. 2024 May 1;15(1):3689. doi: 10.1038/s41467-024-48103-9.

Abstract

Human visual neurons rely on event-driven, energy-efficient spikes for communication, while silicon image sensors do not. The energy-budget mismatch between biological systems and machine vision technology has inspired the development of artificial visual neurons for use in spiking neural network (SNN). However, the lack of multiplexed data coding schemes reduces the ability of artificial visual neurons in SNN to emulate the visual perception ability of biological systems. Here, we present an artificial visual spiking neuron that enables rate and temporal fusion (RTF) coding of external visual information. The artificial neuron can code visual information at different spiking frequencies (rate coding) and enables precise and energy-efficient time-to-first-spike (TTFS) coding. This multiplexed sensory coding scheme could improve the computing capability and efficacy of artificial visual neurons. A hardware-based SNN with the RTF coding scheme exhibits good consistency with real-world ground truth data and achieves highly accurate steering and speed predictions for self-driving vehicles in complex conditions. The multiplexed RTF coding scheme demonstrates the feasibility of developing highly efficient spike-based neuromorphic hardware.

摘要

人类视觉神经元依靠事件驱动、节能的尖峰进行通信,而硅基图像传感器则不能。生物系统和机器视觉技术之间的能量预算不匹配,激发了用于尖峰神经网络 (SNN) 的人工视觉神经元的发展。然而,缺乏复用数据编码方案降低了 SNN 中人工视觉神经元模拟生物系统视觉感知能力的能力。在这里,我们提出了一种人工视觉尖峰神经元,它能够对外部视觉信息进行率和时间融合 (RTF) 编码。人工神经元可以对不同的尖峰频率进行编码(率编码),并实现精确和节能的首次尖峰时间 (TTFS) 编码。这种复用的感觉编码方案可以提高人工视觉神经元的计算能力和效率。具有 RTF 编码方案的基于硬件的 SNN 与真实世界的地面实况数据具有很好的一致性,并在复杂条件下实现了自动驾驶车辆的高度精确的转向和速度预测。复用的 RTF 编码方案展示了开发高效基于尖峰的神经形态硬件的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33bf/11063071/df5e987d629a/41467_2024_48103_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验