Suppr超能文献

使用集成浊度传感器的连续流微流控装置在线测量液-液相分离边界

In-line measurement of liquid-liquid phase separation boundaries using a turbidity-sensor-integrated continuous-flow microfluidic device.

作者信息

Coliaie Paria, Prajapati Aditya, Ali Rabia, Boukerche Moussa, Korde Akshay, Kelkar Manish S, Nere Nandkishor K, Singh Meenesh R

机构信息

Department of Chemical Engineering, University of Illinois Chicago, 929 W. Taylor St., Chicago, IL 60607, USA.

Center of Excellence for Isolation & Separation Technologies (CoExIST), Process R&D, AbbVie Inc., North Chicago, IL 60064, USA.

出版信息

Lab Chip. 2022 Jun 14;22(12):2299-2306. doi: 10.1039/d1lc01112j.

Abstract

Liquid-liquid phase separation (LLPS), also known as oiling-out, is the appearance of the second liquid phase preceding the crystallization. LLPS is an undesirable phenomenon that can occur during the crystallization of active pharmaceutical ingredients (APIs), proteins, and polymers. It is typically avoided during crystallization due to its detrimental impacts on crystalline products due to lowered crystallization rate, the inclusion of impurities, and alteration in particle morphology and size distribution. monitoring of phase separation enables investigating LLPS and identifying the phase separation boundaries. Various process analytical technologies (PATs) have been implemented to determine the LLPS boundaries prior to crystallization to prevent oiling out of compounds. The LLPS measurements using PATs can be time-consuming, expensive, and challenging. Here, we have implemented a fully integrated continuous-flow microfluidic device with a turbidity sensor to quickly and accurately evaluate the LLPS boundaries for a β-alanine, water, and IPA mixture. The turbidity-sensor-integrated continuous-flow microfluidic device is also placed under an optical microscope to visually track and record the appearance and disappearance of oil droplets. Streams of an aqueous solution of β-alanine, pure solvent (water), and pure antisolvent (IPA or ethanol) are pumped into the continuous-flow microfluidic device at various flow rates to obtain the compositions at which the solution becomes turbid. The onset of turbidity is measured using a custom-designed, in-line turbidity sensor. The LLPS boundaries can be estimated using the turbidity-sensor-integrated microfluidic device in less than 30 min, which will significantly improve and enhance the workflow of the pharmaceutical drug (or crystalline material) development process.

摘要

液-液相分离(LLPS),也称为“出油”,是在结晶之前出现的第二液相。LLPS是一种不良现象,可能发生在活性药物成分(API)、蛋白质和聚合物的结晶过程中。由于其对结晶产物有不利影响,如降低结晶速率、包含杂质以及改变颗粒形态和尺寸分布,因此在结晶过程中通常要避免。对相分离进行监测能够研究LLPS并确定相分离边界。已经采用了各种过程分析技术(PAT)来在结晶前确定LLPS边界,以防止化合物“出油”。使用PAT进行LLPS测量可能既耗时、昂贵又具有挑战性。在此,我们构建了一种带有浊度传感器的完全集成式连续流微流控装置,以快速、准确地评估β-丙氨酸、水和异丙醇混合物的LLPS边界。带有浊度传感器的连续流微流控装置还置于光学显微镜下,以直观地跟踪和记录油滴的出现和消失。将β-丙氨酸水溶液、纯溶剂(水)和纯抗溶剂(异丙醇或乙醇)的液流以不同流速泵入连续流微流控装置,以获得溶液变浑浊时的组成。使用定制设计的在线浊度传感器测量浊度的起始点。使用带有浊度传感器的微流控装置可在不到30分钟内估算出LLPS边界,这将显著改进和优化药物(或晶体材料)开发过程的工作流程。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验