Suppr超能文献

COVID-19 肺炎胸部放射学严重程度评分:经验丰富的放射科医生和受训放射科医生之间的变异性评估,以及为人工智能算法开发创建多读者综合评分数据库。

COVID-19 pneumonia chest radiographic severity score: variability assessment among experienced and in-training radiologists and creation of a multireader composite score database for artificial intelligence algorithm development.

机构信息

Department of Radiology and Imaging Sciences, Emory University Hospital | Emory Healthcare, Inc., Atlanta, GA, USA.

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

出版信息

Br J Radiol. 2022 Jun 1;95(1134):20211028. doi: 10.1259/bjr.20211028. Epub 2022 May 5.

Abstract

OBJECTIVE

The purpose was to evaluate reader variability between experienced and in-training radiologists of COVID-19 pneumonia severity on chest radiograph (CXR), and to create a multireader database suitable for AI development.

METHODS

In this study, CXRs from polymerase chain reaction positive COVID-19 patients were reviewed. Six experienced cardiothoracic radiologists and two residents classified each CXR according to severity. One radiologist performed the classification twice to assess intraobserver variability. Severity classification was assessed using a 4-class system: normal (0), mild (1), moderate (2), and severe (3). A median severity score (Rad Med) for each CXR was determined for the six radiologists for development of a multireader database (XCOMS). Kendal Tau correlation and percentage of disagreement were calculated to assess variability.

RESULTS

A total of 397 patients (1208 CXRs) were included (mean age, 60 years SD ± 1), 189 men). Interobserver variability between the radiologists ranges between 0.67 and 0.78. Compared to the Rad Med score, the radiologists show good correlation between 0.79-0.88. Residents show slightly lower interobserver agreement of 0.66 with each other and between 0.69 and 0.71 with experienced radiologists. Intraobserver agreement was high with a correlation coefficient of 0.77. In 220 (18%), 707 (59%), 259 (21%) and 22 (2%) CXRs there was a 0, 1, 2 or 3 class-difference. In 594 (50%) CXRs the median scores of the residents and the radiologists were similar, in 578 (48%) and 36 (3%) CXRs there was a 1 and 2 class-difference.

CONCLUSION

Experienced and in-training radiologists demonstrate good inter- and intraobserver agreement in COVID-19 pneumonia severity classification. A higher percentage of disagreement was observed in moderate cases, which may affect training of AI algorithms.

ADVANCES IN KNOWLEDGE

Most AI algorithms are trained on data labeled by a single expert. This study shows that for COVID-19 X-ray severity classification there is significant variability and disagreement between radiologist and between residents.

摘要

目的

评估经验丰富的放射科医生和受训放射科医生在胸部 X 线(CXR)上对 COVID-19 肺炎严重程度的读者间变异性,并创建一个适合 AI 开发的多读者数据库。

方法

本研究回顾了聚合酶链反应阳性 COVID-19 患者的 CXR。六名有经验的心胸放射科医生和两名住院医师根据严重程度对每张 CXR 进行分类。一名放射科医生对分类进行了两次,以评估观察者内变异性。严重程度分类采用 4 级系统:正常(0)、轻度(1)、中度(2)和重度(3)。为了开发多读者数据库(XCOMS),确定了每位放射科医生对每个 CXR 的中位数严重程度评分(Rad Med)。计算 Kendall Tau 相关性和分歧百分比以评估变异性。

结果

共纳入 397 名患者(1208 张 CXRs,平均年龄 60 岁±1 岁,男性 189 人)。放射科医生之间的观察者间变异性在 0.67 至 0.78 之间。与 Rad Med 评分相比,放射科医生之间的相关性在 0.79-0.88 之间较好。住院医师之间的观察者间一致性稍低,为 0.66,与经验丰富的放射科医生的一致性为 0.69-0.71。观察者内一致性很高,相关系数为 0.77。在 220 张(18%)、707 张(59%)、259 张(21%)和 22 张(2%)CXR 中,存在 0、1、2 或 3 级差异。在 594 张(50%)CXR 中,住院医师和放射科医生的中位数评分相似,在 578 张(48%)和 36 张(3%)CXR 中存在 1 级和 2 级差异。

结论

经验丰富的和受训的放射科医生在 COVID-19 肺炎严重程度分类中表现出良好的观察者间和观察者内一致性。在中度病例中观察到更大比例的不一致,这可能会影响 AI 算法的培训。

知识进展

大多数 AI 算法都是由单个专家标记的数据进行训练的。本研究表明,对于 COVID-19 X 射线严重程度分类,放射科医生之间以及住院医师之间存在显著的变异性和意见分歧。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4689/10996404/ce74c219e8eb/bjr.20211028.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验