Suppr超能文献

基于多阅片者数据集利用深度神经网络对胸部X光片进行肺部疾病的置信度感知严重程度评估

Confidence-Aware Severity Assessment of Lung Disease from Chest X-Rays Using Deep Neural Network on a Multi-Reader Dataset.

作者信息

Zandehshahvar Mohammadreza, van Assen Marly, Kim Eun, Kiarashi Yashar, Keerthipati Vikranth, Tessarin Giovanni, Muscogiuri Emanuele, Stillman Arthur E, Filev Peter, Davarpanah Amir H, Berkowitz Eugene A, Tigges Stefan, Lee Scott J, Vey Brianna L, De Cecco Carlo, Adibi Ali

机构信息

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, USA.

Department of Radiology and Imaging Sciences, Emory School of Medicine, Emory University, Atlanta, USA.

出版信息

J Imaging Inform Med. 2025 Apr;38(2):793-803. doi: 10.1007/s10278-024-01151-5. Epub 2024 Aug 20.

Abstract

In this study, we present a method based on Monte Carlo Dropout (MCD) as Bayesian neural network (BNN) approximation for confidence-aware severity classification of lung diseases in COVID-19 patients using chest X-rays (CXRs). Trained and tested on 1208 CXRs from Hospital 1 in the USA, the model categorizes severity into four levels (i.e., normal, mild, moderate, and severe) based on lung consolidation and opacity. Severity labels, determined by the median consensus of five radiologists, serve as the reference standard. The model's performance is internally validated against evaluations from an additional radiologist and two residents that were excluded from the median. The performance of the model is further evaluated on additional internal and external datasets comprising 2200 CXRs from the same hospital and 1300 CXRs from Hospital 2 in South Korea. The model achieves an average area under the curve (AUC) of 0.94 ± 0.01 across all classes in the primary dataset, surpassing human readers in each severity class and achieves a higher Kendall correlation coefficient (KCC) of 0.80 ± 0.03. The performance of the model is consistent across varied datasets, highlighting its generalization. A key aspect of the model is its predictive uncertainty (PU), which is inversely related to the level of agreement among radiologists, particularly in mild and moderate cases. The study concludes that the model outperforms human readers in severity assessment and maintains consistent accuracy across diverse datasets. Its ability to provide confidence measures in predictions is pivotal for potential clinical use, underscoring the BNN's role in enhancing diagnostic precision in lung disease analysis through CXR.

摘要

在本研究中,我们提出了一种基于蒙特卡洛随机失活(MCD)的方法,作为贝叶斯神经网络(BNN)的近似方法,用于使用胸部X光片(CXR)对新冠肺炎患者的肺部疾病进行置信度感知严重程度分类。该模型在美国医院1的1208张CXR上进行训练和测试,根据肺部实变和模糊度将严重程度分为四个级别(即正常、轻度、中度和重度)。由五位放射科医生的中位数共识确定的严重程度标签作为参考标准。该模型的性能通过另一位放射科医生和两名未参与中位数计算的住院医生的评估进行内部验证。该模型的性能在另外的内部和外部数据集上进一步评估,这些数据集包括来自同一家医院的2200张CXR和来自韩国医院2的1300张CXR。该模型在主要数据集中所有类别上的平均曲线下面积(AUC)为0.94±0.01,在每个严重程度类别上均超过人类读者,并且肯德尔相关系数(KCC)更高,为0.80±0.03。该模型在不同数据集上的性能一致,突出了其泛化能力。该模型的一个关键方面是其预测不确定性(PU),它与放射科医生之间的一致程度呈负相关,特别是在轻度和中度病例中。该研究得出结论,该模型在严重程度评估方面优于人类读者,并且在不同数据集上保持一致的准确性。其在预测中提供置信度度量的能力对于潜在的临床应用至关重要,强调了BNN在通过CXR提高肺部疾病分析诊断精度方面的作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/65b7/11950521/e549ef5ce7d3/10278_2024_1151_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验