Suppr超能文献

LVNet:用于超声心动图成像短轴视图左心室分割的轻量级模型

LVNet: Lightweight Model for Left Ventricle Segmentation for Short Axis Views in Echocardiographic Imaging.

作者信息

Awasthi Navchetan, Vermeer Lars, Fixsen Louis S, Lopata Richard G P, Pluim Josien P W

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Jun;69(6):2115-2128. doi: 10.1109/TUFFC.2022.3169684. Epub 2022 May 26.

Abstract

Lightweight segmentation models are becoming more popular for fast diagnosis on small and low cost medical imaging devices. This study focuses on the segmentation of the left ventricle (LV) in cardiac ultrasound (US) images. A new lightweight model [LV network (LVNet)] is proposed for segmentation, which gives the benefits of requiring fewer parameters but with improved segmentation performance in terms of Dice score (DS). The proposed model is compared with state-of-the-art methods, such as UNet, MiniNetV2, and fully convolutional dense dilated network (FCdDN). The model proposed comes with a post-processing pipeline that further enhances the segmentation results. In general, the training is done directly using the segmentation mask as the output and the US image as the input of the model. A new strategy for segmentation is also introduced in addition to the direct training method used. Compared with the UNet model, an improvement in DS performance as high as 5% for segmentation with papillary (WP) muscles was found, while showcasing an improvement of 18.5% when the papillary muscles are excluded. The model proposed requires only 5% of the memory required by a UNet model. LVNet achieves a better trade-off between the number of parameters and its segmentation performance as compared with other conventional models. The developed codes are available at https://github.com/navchetanawasthi/Left_Ventricle_Segmentation.

摘要

轻量级分割模型在小型低成本医学成像设备的快速诊断中越来越受欢迎。本研究聚焦于心脏超声(US)图像中左心室(LV)的分割。提出了一种用于分割的新型轻量级模型[LV网络(LVNet)],它具有所需参数较少的优点,同时在骰子系数(DS)方面具有改进的分割性能。将所提出的模型与诸如UNet、MiniNetV2和全卷积密集扩张网络(FCdDN)等先进方法进行比较。所提出的模型附带一个后处理管道,可进一步增强分割结果。一般来说,训练直接使用分割掩码作为输出,US图像作为模型的输入。除了所使用的直接训练方法外,还引入了一种新的分割策略。与UNet模型相比,发现对于有乳头肌(WP)的分割,DS性能提高高达5%,而当排除乳头肌时,性能提高了18.5%。所提出的模型仅需要UNet模型所需内存的5%。与其他传统模型相比,LVNet在参数数量和分割性能之间实现了更好的权衡。所开发的代码可在https://github.com/navchetanawasthi/Left_Ventricle_Segmentation获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验