Suppr超能文献

基于深度学习方法的超声心动图二尖瓣反流分类

Classification of mitral regurgitation in echocardiography based on deep learning methods.

作者信息

Huang Helin, Ge Zhenyi, Wang Hairui, Wu Jing, Hu Chunqiang, Li Nan, Wu Xiaomei, Pan Cuizhen

机构信息

Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai, China.

Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai, China.

出版信息

Quant Imaging Med Surg. 2025 Sep 1;15(9):7847-7861. doi: 10.21037/qims-2025-120. Epub 2025 Aug 11.

Abstract

BACKGROUND

The classification of mitral regurgitation (MR) based on echocardiography is highly dependent on the expertise of specialized physicians and is often time-consuming. This study aims to develop an artificial intelligence (AI)-assisted decision-making system to improve the accuracy and efficiency of MR classification.

METHODS

We utilized 754 echocardiography videos from 266 subjects to develop an MR classification model. The dataset included 179 apical two-chamber (A2C), 206 apical three-chamber (A3C), and 369 apical four-chamber (A4C) view videos. A deep learning neural network, named ARMF-Net, was designed to classify MR into four types: normal mitral valve function (NM), degenerative mitral regurgitation (DMR), atrial functional mitral regurgitation (AFMR), and ventricular functional mitral regurgitation (VFMR). ARMF-Net incorporates three-dimensional (3D) convolutional residual modules, a multi-attention mechanism, and auxiliary feature fusion based on the segmentation results of the left atrium and left ventricle. The dataset was split into 639 videos for training and validation, with 115 videos reserved as an independent test set. Model performance was evaluated using precision and F1-score metrics.

RESULTS

At the video level, ARMF-Net achieved an overall precision of 0.93 on the test dataset. The precision for DMR, AFMR, VFMR, and NM was 0.886, 0.81, 1, and 1, respectively. At the participant level, the highest precision was 0.961, with precision values of 1.0, 1.0, 0.846, and 1.0 for DMR, AFMR, VFMR, and NM, respectively. The model can make classifications within seconds, significantly reducing the time and labor required for diagnosis.

CONCLUSIONS

The proposed model can identify NM and three types of MR in echocardiography videos, providing a method for the automated auxiliary analysis and rapid screening of echocardiogram images in clinical practice.

摘要

背景

基于超声心动图的二尖瓣反流(MR)分类高度依赖专科医生的专业知识,且往往耗时。本研究旨在开发一种人工智能(AI)辅助决策系统,以提高MR分类的准确性和效率。

方法

我们利用来自266名受试者的754个超声心动图视频来开发MR分类模型。该数据集包括179个心尖两腔(A2C)、206个心尖三腔(A3C)和369个心尖四腔(A4C)视图视频。设计了一种名为ARMF-Net的深度学习神经网络,将MR分为四种类型:正常二尖瓣功能(NM)、退行性二尖瓣反流(DMR)、心房功能性二尖瓣反流(AFMR)和心室功能性二尖瓣反流(VFMR)。ARMF-Net结合了三维(3D)卷积残差模块、多注意力机制以及基于左心房和左心室分割结果的辅助特征融合。数据集被分为639个视频用于训练和验证,115个视频留作独立测试集。使用精度和F1分数指标评估模型性能。

结果

在视频层面,ARMF-Net在测试数据集上的总体精度达到0.93。DMR、AFMR、VFMR和NM的精度分别为0.886、0.81、1和1。在受试者层面,最高精度为0.961,DMR、AFMR、VFMR和NM的精度值分别为1.0、1.0、0.846和1.0。该模型可以在数秒内完成分类,显著减少诊断所需的时间和人力。

结论

所提出的模型能够在超声心动图视频中识别NM和三种类型的MR,为临床实践中超声心动图图像的自动辅助分析和快速筛查提供了一种方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/637e/12397662/dfb44c3d4fc1/qims-15-09-7847-f1.jpg

相似文献

1
Classification of mitral regurgitation in echocardiography based on deep learning methods.
Quant Imaging Med Surg. 2025 Sep 1;15(9):7847-7861. doi: 10.21037/qims-2025-120. Epub 2025 Aug 11.
3
Automated mitral valve segmentation in PLAX-view transthoracic echocardiography for anatomical assessment and risk stratification.
Comput Biol Med. 2025 Sep;196(Pt C):110900. doi: 10.1016/j.compbiomed.2025.110900. Epub 2025 Aug 20.
6
Deep Learning-Enabled Assessment of Right Ventricular Function Improves Prognostication After Transcatheter Edge-to-Edge Repair for Mitral Regurgitation.
Circ Cardiovasc Imaging. 2025 Jan;18(1):e017005. doi: 10.1161/CIRCIMAGING.124.017005. Epub 2025 Jan 21.
7
A novel nomogram model for diagnosing isolated atrial functional mitral regurgitation in patients with significant functional mitral regurgitation.
Quant Imaging Med Surg. 2025 Jun 6;15(6):5396-5409. doi: 10.21037/qims-2024-2913. Epub 2025 Jun 3.
8
Improved methodology for establishing a mitral regurgitation animal model guided by intracardiac echocardiography.
Quant Imaging Med Surg. 2025 Aug 1;15(8):7269-7280. doi: 10.21037/qims-24-1782. Epub 2025 Jul 29.
9
Long-term Outcomes of Mitral Valve Repair for Atrial Functional Mitral Regurgitation.
Ann Thorac Surg. 2025 Jul;120(1):71-78. doi: 10.1016/j.athoracsur.2024.09.001. Epub 2024 Sep 12.

本文引用的文献

2
Feasibility validation of automatic diagnosis of mitral valve prolapse from multi-view echocardiographic sequences based on deep neural network.
Eur Heart J Imaging Methods Pract. 2024 Oct 28;2(4):qyae086. doi: 10.1093/ehjimp/qyae086. eCollection 2024 Oct.
3
Automated echocardiographic diastolic function grading: A hybrid multi-task deep learning and machine learning approach.
Int J Cardiol. 2024 Dec 1;416:132504. doi: 10.1016/j.ijcard.2024.132504. Epub 2024 Aug 30.
5
Deep Learning in Cardiothoracic Ratio Calculation and Cardiomegaly Detection.
J Clin Med. 2024 Jul 17;13(14):4180. doi: 10.3390/jcm13144180.
7
Machine Learning for Pediatric Echocardiographic Mitral Regurgitation Detection.
J Am Soc Echocardiogr. 2023 Jan;36(1):96-104.e4. doi: 10.1016/j.echo.2022.09.017. Epub 2022 Sep 30.
9
LVNet: Lightweight Model for Left Ventricle Segmentation for Short Axis Views in Echocardiographic Imaging.
IEEE Trans Ultrason Ferroelectr Freq Control. 2022 Jun;69(6):2115-2128. doi: 10.1109/TUFFC.2022.3169684. Epub 2022 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验