Suppr超能文献

基于多尺度输入和坐标注意力的多分辨率聚合 Transformer UNet 用于医学图像分割。

Multiresolution Aggregation Transformer UNet Based on Multiscale Input and Coordinate Attention for Medical Image Segmentation.

机构信息

School of Electronics and Communication Engineering, Sun Yat-sen University, Shenzhen 518000, China.

出版信息

Sensors (Basel). 2022 May 18;22(10):3820. doi: 10.3390/s22103820.

Abstract

The latest medical image segmentation methods uses UNet and transformer structures with great success. Multiscale feature fusion is one of the important factors affecting the accuracy of medical image segmentation. Existing transformer-based UNet methods do not comprehensively explore multiscale feature fusion, and there is still much room for improvement. In this paper, we propose a novel multiresolution aggregation transformer UNet (MRA-TUNet) based on multiscale input and coordinate attention for medical image segmentation. It realizes multiresolution aggregation from the following two aspects: (1) On the input side, a multiresolution aggregation module is used to fuse the input image information of different resolutions, which enhances the input features of the network. (2) On the output side, an output feature selection module is used to fuse the output information of different scales to better extract coarse-grained information and fine-grained information. We try to introduce a coordinate attention structure for the first time to further improve the segmentation performance. We compare with state-of-the-art medical image segmentation methods on the automated cardiac diagnosis challenge and the 2018 atrial segmentation challenge. Our method achieved average dice score of 0.911 for right ventricle (RV), 0.890 for myocardium (Myo), 0.961 for left ventricle (LV), and 0.923 for left atrium (LA). The experimental results on two datasets show that our method outperforms eight state-of-the-art medical image segmentation methods in dice score, precision, and recall.

摘要

最新的医学图像分割方法成功地使用了 UNet 和 Transformer 结构。多尺度特征融合是影响医学图像分割精度的重要因素之一。现有的基于 Transformer 的 UNet 方法并没有全面探索多尺度特征融合,还有很大的改进空间。在本文中,我们提出了一种新颖的基于多尺度输入和坐标注意力的多分辨率聚合 Transformer UNet(MRA-TUNet),用于医学图像分割。它从以下两个方面实现了多分辨率聚合:(1)在输入侧,使用多分辨率聚合模块融合不同分辨率的输入图像信息,增强网络的输入特征。(2)在输出侧,使用输出特征选择模块融合不同尺度的输出信息,以更好地提取粗粒度信息和细粒度信息。我们尝试首次引入坐标注意力结构,以进一步提高分割性能。我们在自动心脏诊断挑战赛和 2018 年心房分割挑战赛上与最先进的医学图像分割方法进行了比较。我们的方法在右心室(RV)、心肌(Myo)、左心室(LV)和左心房(LA)的平均骰子分数分别达到 0.911、0.890、0.961 和 0.923。在两个数据集上的实验结果表明,我们的方法在骰子分数、精度和召回率方面优于八种最先进的医学图像分割方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/41fa/9145221/7d2e4e03c518/sensors-22-03820-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验