Suppr超能文献

一种机器学习分析,用于预测免疫球蛋白静脉注射和皮下注射治疗炎性肌病的反应。一种针对自身免疫性疾病的未来多组学方法的建议。

A machine learning analysis to predict the response to intravenous and subcutaneous immunoglobulin in inflammatory myopathies. A proposal for a future multi-omics approach in autoimmune diseases.

机构信息

Clinica Medica, Dipartimento di Scienze Cliniche e Molecolari, Università Politecnica delle Marche, via Tronto 10/A, 60126 Torrette di Ancona, Italy; Postgraduate School of Allergy and Clinical Immunology, Università Politecnica delle Marche, via Tronto 10/A, 60126 Ancona, Italy.

Institute of Clinical Physiology, National Research Council of Italy (IFC-CNR), Via G. Moruzzi 1, 56124 Pisa, Italy.

出版信息

Autoimmun Rev. 2022 Jun;21(6):103105. doi: 10.1016/j.autrev.2022.103105. Epub 2022 Apr 19.

Abstract

OBJECTIVE

To evaluate the response to treatment with intravenous (IVIg) and subcutaneous (20%SCIg) immunoglobulin in our series of patients with Inflammatory idiopathic myopathies (IIM) by the means of artificial intelligence.

BACKGROUND

IIM are rare diseases mainly involving the skeletal muscle with particular clinical, laboratory and radiological characteristics. Artificial intelligence (AI) represents computer processes which allows to perform complex calculations and data analyses, with the least human intervention. Recently, the use an AI in medicine significantly expanded, especially through machine learning (ML) which analyses huge amounts of information and accordingly makes decisions, and deep learning (DL) which uses artificial neural networks to analyse data and automatically learn.

METHODS

In this study, we employed AI in the evaluation of the response to treatment with IVIg and 20%SCIg in our series of patients with IIM. The diagnoses were determined on the established EULAR/ACR criteria. The treatment response was evaluated employing the following: serum creatine kinase levels, muscle strength (MMT8 score), disease activity (MITAX score) and disability (HAQ-DI score). We evaluated all the above parameters, applying, with R, different supervised ML algorithms, including Least Absolute Shrinkage and Selection Operator, Ridge, Elastic Net, Classification and Regression Trees and Random Forest to estimate the most important predictors for a good response to IVIg and 20%SCIg treatment.

RESULTS AND CONCLUSION

By the means of AI we have been able to identify the scores that best predict a good response to IVIg and 20%SCIg treatment. The muscle strength as evaluated by MMT8 score at the follow-up is predicted by the presence of dysphagia and of skin disorders, and the myositis activity index (MITAX) at the beginning of the treatment. The relationship between muscle strength and MITAX indicates a better action of IVIg therapy in patients with more active systemic disease. Considering our results, Elastic Net and similar approaches were seen to be the most viable, efficient, and effective ML methods for predicting the clinical outcome (MMT8 and MITAX at most) in myositis.

摘要

目的

通过人工智能评估我们一系列特发性炎性肌病(IIM)患者静脉(IVIg)和皮下(20%SCIg)免疫球蛋白治疗的反应。

背景

特发性炎性肌病是一种罕见的疾病,主要累及骨骼肌,具有特殊的临床、实验室和影像学特征。人工智能(AI)代表计算机过程,允许进行复杂的计算和数据分析,而人类干预最少。最近,人工智能在医学中的应用显著扩大,特别是通过机器学习(ML),它分析大量信息并相应地做出决策,以及深度学习(DL),它使用人工神经网络分析数据并自动学习。

方法

在这项研究中,我们在一系列特发性炎性肌病患者中使用人工智能评估静脉注射免疫球蛋白(IVIg)和 20%SCIg 治疗的反应。诊断根据既定的 EULAR/ACR 标准确定。通过以下方法评估治疗反应:血清肌酸激酶水平、肌肉力量(MMT8 评分)、疾病活动度(MITAX 评分)和残疾(HAQ-DI 评分)。我们使用 R 评估了所有上述参数,并应用了不同的监督机器学习算法,包括最小绝对收缩和选择算子、岭、弹性网、分类和回归树以及随机森林,以估计对 IVIg 和 20%SCIg 治疗反应良好的最重要预测因素。

结果和结论

通过人工智能,我们能够确定预测对 IVIg 和 20%SCIg 治疗反应良好的最佳评分。在随访时通过 MMT8 评分评估的肌肉力量由吞咽困难和皮肤疾病的存在以及治疗开始时的肌炎活动指数(MITAX)预测。肌肉力量和 MITAX 之间的关系表明,在系统性疾病更活跃的患者中,IVIg 治疗的作用更好。考虑到我们的结果,弹性网和类似的方法被认为是预测肌炎临床结局(MMT8 和 MITAX 最重要)最可行、高效和有效的 ML 方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验