Qiang Yuhui, Wang Hongyi, Ni Yifei, Wang Jianping, Liu Anqi, Yang Haoyu, Xi Linfeng, Ren Yanhong, Xie Bingbing, Wang Shiyao, Liu Min, Wang Chen, Dai Huaping
Capital Medical University, Beijing, China.
National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.
Quant Imaging Med Surg. 2024 Dec 5;14(12):9258-9275. doi: 10.21037/qims-24-595. Epub 2024 Nov 8.
Rapidly progressive interstitial lung disease (RP-ILD) significantly impacts the prognosis of patients with idiopathic inflammatory myopathies (IIM). High-resolution computed tomography (HRCT) is a crucial noninvasive technique for evaluating interstitial lung disease (ILD). Utilizing quantitative computed tomography (QCT) enables accurate quantification of disease severity and evaluation of prognosis, thereby serving as a crucial computer-aided diagnostic method. This study aimed to establish and validate a machine learning (ML) model to predict RP-ILD in patients with idiopathic inflammatory myopathy-related interstitial lung disease (IIM-ILD) based on QCT and clinical features.
A total of 514 patients (367 females, median age 54 years) with IIM-ILD in the China-Japan Friendship Hospital were retrospectively included, out of which 249 cases (165 females, median age 55 years) were identified as having RP-ILD. To extract the quantitative features on HRCT, deep learning (DL) methods were employed, along with demographic factors, pulmonary function test results, and blood gas analysis results; these factors were integrated into a final prediction model.
Logistic regression was chosen as the final model due to its superior area under the curve (AUC) and explainability compared to the other seven ML models. The validation dataset yielded an AUC of 0.882 [95% confidence interval (CI): 0.797-0.967], indicating that the combined QCT and clinical features model outperformed both the QCT-only model and the clinically-only model. In calibration and clinical decision curve analysis, the final model demonstrated minimal prediction bias (concordance index: 0.887, 95% CI: 0.800-0.974, P<0.001) and provided greater net benefit across most thresholds. The nomogram encompassed the incorporation of the following variables: subtype, gender, forced expiratory volume in one second (FEV%), diffusing capacity for carbon monoxide (DL%), oxygenation index (OI), and quantitative ground-glass opacities (GGOs), consolidation, pulmonary vascular, and branches on HRCT.
When utilizing ML techniques, the baseline QCT has the potential to predict rapid progression in patients with IIM-ILD. The prediction performance will be further improved by incorporating clinical data alongside HRCT features.
Idiopathic inflammatory myopathy (IIM); rapidly progressive interstitial lung disease (RP-ILD); high-resolution computed tomography (HRCT); machine learning (ML); quantitative computed tomography (QCT).
快速进展性间质性肺疾病(RP-ILD)显著影响特发性炎性肌病(IIM)患者的预后。高分辨率计算机断层扫描(HRCT)是评估间质性肺疾病(ILD)的关键非侵入性技术。利用定量计算机断层扫描(QCT)能够准确量化疾病严重程度并评估预后,从而成为一种关键的计算机辅助诊断方法。本研究旨在基于QCT和临床特征建立并验证一种机器学习(ML)模型,以预测特发性炎性肌病相关间质性肺疾病(IIM-ILD)患者中的RP-ILD。
回顾性纳入中日友好医院共514例IIM-ILD患者(367例女性,中位年龄54岁),其中249例(165例女性,中位年龄55岁)被确定为患有RP-ILD。为提取HRCT上的定量特征,采用了深度学习(DL)方法,同时纳入人口统计学因素、肺功能测试结果和血气分析结果;这些因素被整合到最终的预测模型中。
由于与其他七个ML模型相比,逻辑回归的曲线下面积(AUC)更优且具有可解释性,因此被选为最终模型。验证数据集的AUC为0.882 [95%置信区间(CI):0.797-0.967],表明QCT与临床特征相结合的模型优于仅基于QCT的模型和仅基于临床的模型。在校准和临床决策曲线分析中,最终模型显示出最小的预测偏差(一致性指数:0.887,95% CI:0.800-0.974,P<0.001),并且在大多数阈值下提供了更大的净效益。列线图纳入了以下变量:亚型、性别、一秒用力呼气容积(FEV%)、一氧化碳弥散量(DL%)、氧合指数(OI)以及HRCT上的定量磨玻璃影(GGO)、实变、肺血管和分支。
利用ML技术时,基线QCT有可能预测IIM-ILD患者的快速进展。将临床数据与HRCT特征相结合可进一步提高预测性能。
特发性炎性肌病(IIM);快速进展性间质性肺疾病(RP-ILD);高分辨率计算机断层扫描(HRCT);机器学习(ML);定量计算机断层扫描(QCT)