Suppr超能文献

骨桥蛋白-A:IgA肾病的潜在生物标志物——机器学习应用

Osteopontin-A Potential Biomarker for IgA Nephropathy: Machine Learning Application.

作者信息

Moszczuk Barbara, Krata Natalia, Rudnicki Witold, Foroncewicz Bartosz, Cysewski Dominik, Pączek Leszek, Kaleta Beata, Mucha Krzysztof

机构信息

Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, 02-006 Warsaw, Poland.

ProMix Center (ProteogenOmix in Medicine), Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, 02-006 Warsaw, Poland.

出版信息

Biomedicines. 2022 Mar 22;10(4):734. doi: 10.3390/biomedicines10040734.

Abstract

Many potential biomarkers in nephrology have been studied, but few are currently used in clinical practice. One is osteopontin (OPN). We compared urinary OPN concentrations in 80 participants: 67 patients with various biopsy-proven glomerulopathies (GNs)-immunoglobulin A nephropathy (IgAN, 29), membranous nephropathy (MN, 20) and lupus nephritis (LN, 18) and 13 with no GN. Follow-up included 48 participants. Machine learning was used to correlate OPN with other factors to classify patients by GN type. The resulting algorithm had an accuracy of 87% in differentiating IgAN from other GNs using urinary OPN levels only. A lesser effect for discriminating MN and LN was observed. However, the lower number of patients and the phenotypic heterogeneity of MN and LN might have affected those results. OPN was significantly higher in IgAN at baseline than in other GNs and therefore might be useful for identifying patients with IgAN. That observation did not apply to either patients with IgAN at follow-up or to patients with other GNs. OPN seems to be a valuable biomarker and should be validated in future studies. Machine learning is a powerful tool that, compared with traditional statistical methods, can be also applied to smaller datasets.

摘要

肾脏病学领域已经对许多潜在的生物标志物进行了研究,但目前在临床实践中使用的却很少。其中一种是骨桥蛋白(OPN)。我们比较了80名参与者的尿OPN浓度:67例经活检证实患有各种肾小球疾病(GNs)的患者——免疫球蛋白A肾病(IgAN,29例)、膜性肾病(MN,20例)和狼疮性肾炎(LN,18例),以及13例无肾小球疾病的患者。随访包括48名参与者。使用机器学习将OPN与其他因素相关联,以按肾小球疾病类型对患者进行分类。仅使用尿OPN水平,所得算法在区分IgAN与其他肾小球疾病方面的准确率为87%。在区分MN和LN方面观察到的效果较差。然而,患者数量较少以及MN和LN的表型异质性可能影响了这些结果。基线时,IgAN患者的OPN显著高于其他肾小球疾病患者,因此可能有助于识别IgAN患者。这一观察结果不适用于随访时的IgAN患者或其他肾小球疾病患者。OPN似乎是一种有价值的生物标志物,应在未来的研究中进行验证。机器学习是一种强大的工具,与传统统计方法相比,它也可应用于较小的数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bfdc/9025015/1cc0af617932/biomedicines-10-00734-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验