Suppr超能文献

用于与冠状病毒相关综合征的科学文献生物医学文本挖掘的网络应用程序:冠状病毒查找器

A Web Application for Biomedical Text Mining of Scientific Literature Associated with Coronavirus-Related Syndromes: Coronavirus Finder.

作者信息

Armenta-Medina Dagoberto, Brambila-Tapia Aniel Jessica Leticia, Miranda-Jiménez Sabino, Rodea-Montero Edel Rafael

机构信息

Consejo Nacional de Ciencia y Tecnología (CONACyT), Ciudad de México 03940, Mexico.

Centro de Investigación e Innovación en Tecnologías de la Información y Comunicación (INFOTEC), Aguascalientes 20326, Mexico.

出版信息

Diagnostics (Basel). 2022 Apr 2;12(4):887. doi: 10.3390/diagnostics12040887.

Abstract

In this study, a web application was developed that comprises scientific literature associated with the family, specifically for those viruses that are members of the Genus Betacoronavirus, responsible for emerging diseases with a great impact on human health: Middle East Respiratory Syndrome-Related Coronavirus (MERS-CoV) and Severe Acute Respiratory Syndrome-Related Coronavirus (SARS-CoV, SARS-CoV-2). The information compiled on this webserver aims to understand the basics of these viruses' infection, and the nature of their pathogenesis, enabling the identification of molecular and cellular components that may function as potential targets on the design and development of successful treatments for the diseases associated with the family. Some of the web application's primary functions are searching for keywords within the scientific literature, natural language processing for the extraction of genes and words, the generation and visualization of gene networks associated with viral diseases derived from the analysis of latent semantic space, and cosine similarity measures. Interestingly, our gene association analysis reveals drug targets in understudies, and new targets suggested in the scientific literature to treat coronavirus.

摘要

在本研究中,开发了一个网络应用程序,它包含与该病毒家族相关的科学文献,特别是针对那些属于β冠状病毒属的病毒,这些病毒会引发对人类健康有重大影响的新出现疾病:中东呼吸综合征相关冠状病毒(MERS-CoV)和严重急性呼吸综合征相关冠状病毒(SARS-CoV、SARS-CoV-2)。在这个网络服务器上汇编的信息旨在了解这些病毒感染的基础知识及其发病机制的本质,从而能够识别那些在与该病毒家族相关疾病的成功治疗设计和开发中可能作为潜在靶点的分子和细胞成分。该网络应用程序的一些主要功能包括在科学文献中搜索关键词、用于提取基因和词汇的自然语言处理、通过潜在语义空间分析生成并可视化与病毒性疾病相关的基因网络,以及余弦相似性度量。有趣的是,我们的基因关联分析揭示了正在研究中的药物靶点以及科学文献中提出的治疗冠状病毒的新靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08ee/9028729/74851eee2692/diagnostics-12-00887-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验