Suppr超能文献

通过扩展主动推理实现目标导向规划与目标理解:基于模拟和物理机器人实验的评估

Goal-Directed Planning and Goal Understanding by Extended Active Inference: Evaluation through Simulated and Physical Robot Experiments.

作者信息

Matsumoto Takazumi, Ohata Wataru, Benureau Fabien C Y, Tani Jun

机构信息

Cognitive Neurorobotics Research Unit, Okinawa Institute of Science and Technology, Okinawa 904-0495, Japan.

出版信息

Entropy (Basel). 2022 Mar 28;24(4):469. doi: 10.3390/e24040469.

Abstract

We show that goal-directed action planning and generation in a teleological framework can be formulated by extending the active inference framework. The proposed model, which is built on a variational recurrent neural network model, is characterized by three essential features. These are that (1) goals can be specified for both static sensory states, e.g., for goal images to be reached and dynamic processes, e.g., for moving around an object, (2) the model cannot only generate goal-directed action plans, but can also understand goals through sensory observation, and (3) the model generates future action plans for given goals based on the best estimate of the current state, inferred from past sensory observations. The proposed model is evaluated by conducting experiments on a simulated mobile agent as well as on a real humanoid robot performing object manipulation.

摘要

我们表明,在目的论框架下的目标导向行动规划和生成可以通过扩展主动推理框架来制定。所提出的模型基于变分递归神经网络模型构建,具有三个基本特征。即(1)可以为静态感官状态(例如要达到的目标图像)和动态过程(例如围绕物体移动)指定目标;(2)该模型不仅可以生成目标导向的行动计划,还可以通过感官观察理解目标;(3)该模型根据从过去感官观察推断出的当前状态的最佳估计,为给定目标生成未来行动计划。通过在模拟移动代理以及执行物体操纵的真实人形机器人上进行实验,对所提出的模型进行了评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d692/9026632/7fd953f163d9/entropy-24-00469-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验