Microsoft Research Asia, Shanghai, 200232, China.
Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan.
Nat Commun. 2024 May 25;15(1):4461. doi: 10.1038/s41467-024-48577-7.
Behaving efficiently and flexibly is crucial for biological and artificial embodied agents. Behavior is generally classified into two types: habitual (fast but inflexible), and goal-directed (flexible but slow). While these two types of behaviors are typically considered to be managed by two distinct systems in the brain, recent studies have revealed a more sophisticated interplay between them. We introduce a theoretical framework using variational Bayesian theory, incorporating a Bayesian intention variable. Habitual behavior depends on the prior distribution of intention, computed from sensory context without goal-specification. In contrast, goal-directed behavior relies on the goal-conditioned posterior distribution of intention, inferred through variational free energy minimization. Assuming that an agent behaves using a synergized intention, our simulations in vision-based sensorimotor tasks explain the key properties of their interaction as observed in experiments. Our work suggests a fresh perspective on the neural mechanisms of habits and goals, shedding light on future research in decision making.
行为的高效性和灵活性对于生物和人工体现代理至关重要。行为通常分为两种类型:习惯性(快速但不灵活)和目标导向(灵活但缓慢)。虽然这两种行为通常被认为是由大脑中的两个不同系统管理的,但最近的研究揭示了它们之间更复杂的相互作用。我们使用变分贝叶斯理论引入了一个理论框架,其中包含一个贝叶斯意图变量。习惯性行为取决于意图的先验分布,该分布是从没有目标指定的感官背景中计算得出的。相比之下,目标导向的行为依赖于通过变分自由能最小化推断出的意图的目标条件后验分布。假设一个代理使用协同意图进行行为,我们在基于视觉的感觉运动任务中的模拟解释了实验中观察到的它们相互作用的关键特性。我们的工作为习惯和目标的神经机制提供了新的视角,为未来的决策研究提供了启示。