Xie Feng, He Yangbo, Geng Zhi, Chen Zhengming, Hou Ru, Zhang Kun
School of Mathematical Sciences, Peking University, Beijing 100871, China.
School of Mathematics and Statistics, Beijing Technology and Business University, Beijing 100048, China.
Entropy (Basel). 2022 Apr 5;24(4):512. doi: 10.3390/e24040512.
This paper investigates the problem of selecting instrumental variables relative to a target causal influence X→Y from observational data generated by linear non-Gaussian acyclic causal models in the presence of unmeasured confounders. We propose a necessary condition for detecting variables that cannot serve as instrumental variables. Unlike many existing conditions for continuous variables, i.e., that at least two or more valid instrumental variables are present in the system, our condition is designed with a single instrumental variable. We then characterize the graphical implications of our condition in linear non-Gaussian acyclic causal models. Given that the existing graphical criteria for the instrument validity are not directly testable given observational data, we further show whether and how such graphical criteria can be checked by exploiting our condition. Finally, we develop a method to select the set of candidate instrumental variables given observational data. Experimental results on both synthetic and real-world data show the effectiveness of the proposed method.
本文研究了在存在未观测到的混杂因素的情况下,从线性非高斯无环因果模型生成的观测数据中选择相对于目标因果影响X→Y的工具变量的问题。我们提出了一个检测不能作为工具变量的变量的必要条件。与许多现有的连续变量条件不同,即系统中至少存在两个或更多有效的工具变量,我们的条件是针对单个工具变量设计的。然后,我们刻画了我们的条件在线性非高斯无环因果模型中的图形含义。鉴于现有的工具有效性图形标准在给定观测数据时无法直接检验,我们进一步展示了是否以及如何通过利用我们的条件来检验此类图形标准。最后,我们开发了一种根据观测数据选择候选工具变量集的方法。在合成数据和真实世界数据上的实验结果表明了所提方法的有效性。