Suppr超能文献

具有个体特定混杂变量和非高斯分布的无环结构方程模型中因果方向的贝叶斯估计

Bayesian Estimation of Causal Direction in Acyclic Structural Equation Models with Individual-specific Confounder Variables and Non-Gaussian Distributions.

作者信息

Shimizu Shohei, Bollen Kenneth

机构信息

The Institute of Scientific and Industrial Research Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.

Department of Sociology, CB 3210 Hamilton Hall University of North Carolina Chapel Hill, NC 27599-3210 U.S.A.

出版信息

J Mach Learn Res. 2014 Aug;15:2629-2652.

Abstract

Several existing methods have been shown to consistently estimate causal direction assuming linear or some form of nonlinear relationship and no latent confounders. However, the estimation results could be distorted if either assumption is violated. We develop an approach to determining the possible causal direction between two observed variables when latent confounding variables are present. We first propose a new linear non-Gaussian acyclic structural equation model with individual-specific effects that are sometimes the source of confounding. Thus, modeling individual-specific effects as latent variables allows latent confounding to be considered. We then propose an empirical Bayesian approach for estimating possible causal direction using the new model. We demonstrate the effectiveness of our method using artificial and real-world data.

摘要

现有的几种方法已被证明,在假设线性或某种形式的非线性关系且不存在潜在混杂因素的情况下,能够一致地估计因果方向。然而,如果违反任何一个假设,估计结果可能会失真。我们开发了一种方法,用于在存在潜在混杂变量时确定两个观测变量之间可能的因果方向。我们首先提出了一种新的线性非高斯无环结构方程模型,该模型具有个体特定效应,而这些效应有时是混杂的来源。因此,将个体特定效应建模为潜在变量可以考虑潜在混杂因素。然后,我们提出了一种经验贝叶斯方法,用于使用新模型估计可能的因果方向。我们使用人工数据和真实世界数据证明了我们方法的有效性。

相似文献

4
Causal Artificial Intelligence Models of Food Quality Data.食品质量数据的因果人工智能模型。
Food Technol Biotechnol. 2024 Mar;62(1):102-109. doi: 10.17113/ftb.62.01.24.8301.
10
Nonlinear causal discovery with confounders.含混杂因素的非线性因果发现
J Am Stat Assoc. 2024;119(546):1205-1214. doi: 10.1080/01621459.2023.2179490. Epub 2023 Mar 15.

引用本文的文献

本文引用的文献

4
New methods for separating causes from effects in genomics data.基因组学数据中因果分离的新方法。
BMC Genomics. 2012;13 Suppl 8(Suppl 8):S22. doi: 10.1186/1471-2164-13-S8-S22. Epub 2012 Dec 17.
7
Causal Inference on Discrete Data Using Additive Noise Models.基于加性噪声模型的离散数据因果推断。
IEEE Trans Pattern Anal Mach Intell. 2011 Dec;33(12):2436-50. doi: 10.1109/TPAMI.2011.71. Epub 2011 Apr 5.
8
Network modelling methods for FMRI.功能磁共振成像的网络建模方法。
Neuroimage. 2011 Jan 15;54(2):875-91. doi: 10.1016/j.neuroimage.2010.08.063. Epub 2010 Sep 15.
10
Topographic independent component analysis.地形独立成分分析
Neural Comput. 2001 Jul;13(7):1527-58. doi: 10.1162/089976601750264992.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验