Shimizu Shohei, Bollen Kenneth
The Institute of Scientific and Industrial Research Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan.
Department of Sociology, CB 3210 Hamilton Hall University of North Carolina Chapel Hill, NC 27599-3210 U.S.A.
J Mach Learn Res. 2014 Aug;15:2629-2652.
Several existing methods have been shown to consistently estimate causal direction assuming linear or some form of nonlinear relationship and no latent confounders. However, the estimation results could be distorted if either assumption is violated. We develop an approach to determining the possible causal direction between two observed variables when latent confounding variables are present. We first propose a new linear non-Gaussian acyclic structural equation model with individual-specific effects that are sometimes the source of confounding. Thus, modeling individual-specific effects as latent variables allows latent confounding to be considered. We then propose an empirical Bayesian approach for estimating possible causal direction using the new model. We demonstrate the effectiveness of our method using artificial and real-world data.
现有的几种方法已被证明,在假设线性或某种形式的非线性关系且不存在潜在混杂因素的情况下,能够一致地估计因果方向。然而,如果违反任何一个假设,估计结果可能会失真。我们开发了一种方法,用于在存在潜在混杂变量时确定两个观测变量之间可能的因果方向。我们首先提出了一种新的线性非高斯无环结构方程模型,该模型具有个体特定效应,而这些效应有时是混杂的来源。因此,将个体特定效应建模为潜在变量可以考虑潜在混杂因素。然后,我们提出了一种经验贝叶斯方法,用于使用新模型估计可能的因果方向。我们使用人工数据和真实世界数据证明了我们方法的有效性。