Suppr超能文献

用于支持医学康复中体育锻炼的增强现实和混合现实应用分类法——文献综述

A Taxonomy for Augmented and Mixed Reality Applications to Support Physical Exercises in Medical Rehabilitation-A Literature Review.

作者信息

Butz Benjamin, Jussen Alexander, Rafi Asma, Lux Gregor, Gerken Jens

机构信息

Institute for Innovation Research and Management, Westphalian University of Applied Sciences, 44801 Bochum, Germany.

Human-Computer Interaction Group, Westphalian University of Applied Sciences, 45897 Gelsenkirchen, Germany.

出版信息

Healthcare (Basel). 2022 Mar 30;10(4):646. doi: 10.3390/healthcare10040646.

Abstract

In the past 20 years, a vast amount of research has shown that Augmented and Mixed Reality applications can support physical exercises in medical rehabilitation. In this paper, we contribute a taxonomy, providing an overview of the current state of research in this area. It is based on a comprehensive literature review conducted on the five databases Web of Science, ScienceDirect, PubMed, IEEE Xplore, and ACM up to July 2021. Out of 776 identified references, a final selection was made of 91 papers discussing the usage of visual stimuli delivered by AR/MR or similar technology to enhance the performance of physical exercises in medical rehabilitation. The taxonomy bridges the gap between a medical perspective (Patient Type, Medical Purpose) and the Interaction Design, focusing on Output Technologies and Visual Guidance. Most approaches aim to improve autonomy in the absence of a therapist and increase motivation to improve adherence. Technology is still focused on screen-based approaches, while the deeper analysis of Visual Guidance revealed 13 distinct, reoccurring abstract types of elements. Based on the analysis, implications and research opportunities are presented to guide future work.

摘要

在过去20年里,大量研究表明,增强现实和混合现实应用可以在医学康复中支持体育锻炼。在本文中,我们提出了一种分类法,概述了该领域的当前研究状况。它基于截至2021年7月在Web of Science、ScienceDirect、PubMed、IEEE Xplore和ACM这五个数据库上进行的全面文献综述。在776篇已识别的参考文献中,最终选定了91篇论文,这些论文讨论了利用增强现实/混合现实或类似技术提供的视觉刺激来提高医学康复中体育锻炼的效果。该分类法弥合了医学视角(患者类型、医学目的)与交互设计之间的差距,重点关注输出技术和视觉引导。大多数方法旨在在没有治疗师的情况下提高自主性,并增加改善依从性的动力。技术仍侧重于基于屏幕的方法,而对视觉引导的深入分析揭示了13种不同的、反复出现的抽象元素类型。基于该分析,提出了相关启示和研究机会,以指导未来的工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11cc/9028587/9db04d7f9377/healthcare-10-00646-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验