Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, 00185 Rome, Italy.
Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy.
Cells. 2022 Apr 9;11(8):1284. doi: 10.3390/cells11081284.
Alzheimer's disease (AD) is an irreversible age-related neurodegenerative disorder clinically characterized by severe memory impairment, language deficits and cognitive decline. The major neuropathological hallmarks of AD include extracellular deposits of the β-amyloid (Aβ) peptides and cytoplasmic neurofibrillary tangles (NFTs) of hyperphosphorylated tau protein. The accumulation of plaques and tangles in the brain triggers a cascade of molecular events that culminate in neuronal damage and cell death. Despite extensive research, our understanding of the molecular basis of AD pathogenesis remains incomplete and a cure for this devastating disease is still not available. A growing body of evidence in different experimental models suggests that poly(ADP-ribose) polymerase-1 (PARP-1) overactivation might be a crucial component of the molecular network of interactions responsible for AD pathogenesis. In this work, we combined genetic, molecular and biochemical approaches to investigate the effects of two different PARP-1 inhibitors (olaparib and MC2050) in models of Alzheimer's disease by exploring their neuroprotective and therapeutic potential in vivo. We found that both pharmacological inhibition and genetic inactivation of PARP-1 significantly extend lifespan and improve the climbing ability of transgenic AD flies. Consistently, PARP-1 inhibitors lead to a significant decrease of Aβ42 aggregates and partially rescue the epigenetic alterations associated with AD in the brain. Interestingly, olaparib and MC2050 also suppress the AD-associated aberrant activation of transposable elements in neuronal tissues of AD flies.
阿尔茨海默病(AD)是一种不可逆转的与年龄相关的神经退行性疾病,临床上以严重的记忆障碍、语言缺陷和认知能力下降为特征。AD 的主要神经病理学特征包括β-淀粉样蛋白(Aβ)肽的细胞外沉积和过度磷酸化 tau 蛋白的细胞质神经原纤维缠结(NFTs)。斑块和缠结在大脑中的积累引发了一连串的分子事件,最终导致神经元损伤和细胞死亡。尽管进行了广泛的研究,但我们对 AD 发病机制的分子基础的理解仍然不完整,这种破坏性疾病仍然没有治愈方法。越来越多的证据表明,多聚(ADP-核糖)聚合酶-1(PARP-1)过度激活可能是导致 AD 发病机制的分子相互作用网络的关键组成部分。在这项工作中,我们结合了遗传、分子和生化方法,通过探索两种不同的 PARP-1 抑制剂(奥拉帕利和 MC2050)在 AD 模型中的神经保护和治疗潜力,来研究其在体内的作用。我们发现,PARP-1 的药理学抑制和基因失活都能显著延长转 AD 果蝇的寿命并提高其攀爬能力。一致地,PARP-1 抑制剂能显著减少 Aβ42 聚集物,并部分挽救与 AD 相关的脑内表观遗传改变。有趣的是,奥拉帕利和 MC2050 也能抑制 AD 相关的转座元件在 AD 果蝇神经元组织中的异常激活。