Suppr超能文献

用于高产SARS-CoV-2刺突蛋白的昆虫细胞:构建基于病毒体的COVID-19候选疫苗

Insect Cells for High-Yield Production of SARS-CoV-2 Spike Protein: Building a Virosome-Based COVID-19 Vaccine Candidate.

作者信息

Fernandes Bárbara, Castro Rute, Bhoelan Farien, Bemelman Denzel, Gomes Ricardo A, Costa Júlia, Gomes-Alves Patrícia, Stegmann Toon, Amacker Mario, Alves Paula M, Fleury Sylvain, Roldão António

机构信息

iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901 Oeiras, Portugal.

ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.

出版信息

Pharmaceutics. 2022 Apr 13;14(4):854. doi: 10.3390/pharmaceutics14040854.

Abstract

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) homotrimeric spike (S) protein is responsible for mediating host cell entry by binding to the angiotensin-converting enzyme 2 (ACE2) receptor, thus being a key viral antigen to target in a coronavirus disease 19 (COVID-19) vaccine. Despite the availability of COVID-19 vaccines, low vaccine coverage as well as unvaccinated and immune compromised subjects are contributing to the emergence of SARS-CoV-2 variants of concern. Therefore, continued development of novel and/or updated vaccines is essential for protecting against such new variants. In this study, we developed a scalable bioprocess using the insect cells-baculovirus expression vector system (IC-BEVS) to produce high-quality S protein, stabilized in its pre-fusion conformation, for inclusion in a virosome-based COVID-19 vaccine candidate. By exploring different bioprocess engineering strategies (i.e., signal peptides, baculovirus transfer vectors, cell lines, infection strategies and formulation buffers), we were able to obtain ~4 mg/L of purified S protein, which, to the best of our knowledge, is the highest value achieved to date using insect cells. In addition, the insect cell-derived S protein exhibited glycan processing similar to mammalian cells and mid-term stability upon storage (up to 90 days at -80 and 4 °C or after 5 freeze-thaw cycles). Noteworthy, antigenicity of S protein, either as single antigen or displayed on the surface of virosomes, was confirmed by ELISA, with binding of ACE2 receptor, pan-SARS antibody CR3022 and neutralizing antibodies to the various epitope clusters on the S protein. Binding capacity was also maintained on virosomes-S stored at 4 °C for 1 month. This work demonstrates the potential of using IC-BEVS to produce the highly glycosylated and complex S protein, without compromising its integrity and antigenicity, to be included in a virosome-based COVID-19 vaccine candidate.

摘要

严重急性呼吸综合征冠状病毒2(SARS-CoV-2)的同源三聚体刺突(S)蛋白通过与血管紧张素转换酶2(ACE2)受体结合介导宿主细胞进入,因此是冠状病毒病19(COVID-19)疫苗中的关键病毒抗原。尽管有了COVID-19疫苗,但疫苗接种覆盖率低以及未接种疫苗和免疫功能低下的人群导致了值得关注的SARS-CoV-2变体的出现。因此,持续研发新型和/或更新疫苗对于预防此类新变体至关重要。在本研究中,我们开发了一种可扩展的生物工艺,利用昆虫细胞-杆状病毒表达载体系统(IC-BEVS)生产高质量的S蛋白,该蛋白稳定在其融合前构象,用于基于病毒体的COVID-19候选疫苗。通过探索不同的生物工艺工程策略(即信号肽、杆状病毒转移载体、细胞系、感染策略和配方缓冲液),我们能够获得约4 mg/L的纯化S蛋白,据我们所知,这是迄今为止使用昆虫细胞获得的最高产量。此外,昆虫细胞来源的S蛋白表现出与哺乳动物细胞相似的聚糖加工过程,并且在储存时具有中期稳定性(在-80和4°C下长达90天或经过5次冻融循环)。值得注意的是,通过ELISA证实了S蛋白作为单一抗原或展示在病毒体表面时的抗原性,ACE2受体、泛SARS抗体CR3022和中和抗体与S蛋白上的各种表位簇结合。在4°C储存1个月的病毒体-S上也保持了结合能力。这项工作证明了使用IC-BEVS生产高度糖基化和复杂的S蛋白的潜力,同时不损害其完整性和抗原性,可用于基于病毒体的COVID-19候选疫苗。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a98b/9031128/4c23bfc091f4/pharmaceutics-14-00854-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验