Gómez-Morales Jaime, Fernández-Penas Raquel, Acebedo-Martínez Francisco Javier, Romero-Castillo Ismael, Verdugo-Escamilla Cristóbal, Choquesillo-Lazarte Duane, Esposti Lorenzo Degli, Jiménez-Martínez Yaiza, Fernández-Sánchez Jorge Fernando, Iafisco Michele, Boulaiz Houria
Laboratorio de Estudios Cristalográficos, IACT-CSIC-UGR, Avda. Las Palmeras No. 4, 18100 Armilla, Spain.
Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018 Faenza, Italy.
Nanomaterials (Basel). 2022 Apr 7;12(8):1257. doi: 10.3390/nano12081257.
This work explores the preparation of luminescent and biomimetic Tb-doped citrate-functionalized carbonated apatite nanoparticles. These nanoparticles were synthesized employing a citrate-based thermal decomplexing precipitation method, testing a nominal Tb doping concentration between 0.001 M to 0.020 M, and a maturation time from 4 h to 7 days. This approach allowed to prepare apatite nanoparticles as a single hydroxyapatite phase when the used Tb concentrations were (i) ≤ 0.005 M at all maturation times or (ii) = 0.010 M with 4 h of maturation. At higher Tb concentrations, amorphous TbPO·nHO formed at short maturation times, while materials consisting of a mixture of carbonated apatite prisms, TbPO·HO (rhabdophane) nanocrystals, and an amorphous phase formed at longer times. The Tb content of the samples reached a maximum of 21.71 wt%. The relative luminescence intensity revealed an almost linear dependence with Tb up to a maximum of 850 units. Neither pH, nor ionic strength, nor temperature significantly affected the luminescence properties. All precipitates were cytocompatible against A375, MCF7, and HeLa carcinogenic cells, and also against healthy fibroblast cells. Moreover, the luminescence properties of these nanoparticles allowed to visualize their intracellular cytoplasmic uptake at 12 h of treatment through flow cytometry and fluorescence confocal microscopy (green fluorescence) when incubated with A375 cells. This demonstrates for the first time the potential of these materials as nanophosphors for living cell imaging compatible with flow cytometry and fluorescence confocal microscopy without the need to introduce an additional fluorescence dye. Overall, our results demonstrated that Tb-doped citrate-functionalized apatite nanoparticles are excellent candidates for bioimaging applications.
本研究探索了发光且具有仿生功能的铽掺杂柠檬酸盐功能化碳酸化磷灰石纳米颗粒的制备方法。这些纳米颗粒采用基于柠檬酸盐的热解络沉淀法合成,测试了名义铽掺杂浓度在0.001 M至0.020 M之间,以及成熟时间从4小时到7天的情况。当使用的铽浓度为(i)在所有成熟时间下≤0.005 M或(ii)成熟4小时时=0.010 M时,该方法能够制备出单一羟基磷灰石相的磷灰石纳米颗粒。在较高铽浓度下,短成熟时间会形成无定形TbPO·nH₂O,而在较长时间会形成由碳酸化磷灰石棱柱、TbPO·H₂O(水磷铽矿)纳米晶体和无定形相组成的混合物。样品中的铽含量最高达到21.71 wt%。相对发光强度显示,与铽几乎呈线性关系,最大值为850个单位。pH值、离子强度和温度均未对发光性能产生显著影响。所有沉淀物对A375、MCF7和HeLa癌细胞以及健康成纤维细胞均具有细胞相容性。此外,当与A375细胞孵育时,这些纳米颗粒的发光特性使其在处理12小时后能够通过流式细胞术和荧光共聚焦显微镜(绿色荧光)观察到其细胞内细胞质摄取情况。这首次证明了这些材料作为与流式细胞术和荧光共聚焦显微镜兼容的活细胞成像纳米磷光体的潜力,无需引入额外的荧光染料。总体而言,我们的结果表明铽掺杂柠檬酸盐功能化磷灰石纳米颗粒是生物成像应用的优秀候选材料。