Suppr超能文献

基于近红外的高附加值可生物吸收聚合物加工产品屈服应力的智能传感

NIR-Based Intelligent Sensing of Product Yield Stress for High-Value Bioresorbable Polymer Processing.

机构信息

Centre for Mathematical Modelling and Intelligent Systems for Health and Environment (MISHE), Atlantic Technological University, ATU Sligo, Ash Lane, F91 YW50 Sligo, Ireland.

Centre for Precision Engineering, Materials and Manufacturing (PEM Centre), Atlantic Technological University, ATU Sligo, Ash Lane, F91 YW50 Sligo, Ireland.

出版信息

Sensors (Basel). 2022 Apr 7;22(8):2835. doi: 10.3390/s22082835.

Abstract

PLA (polylactide) is a bioresorbable polymer used in implantable medical and drug delivery devices. Like other bioresorbable polymers, PLA needs to be processed carefully to avoid degradation. In this work we combine in-process temperature, pressure, and NIR spectroscopy measurements with multivariate regression methods for prediction of the mechanical strength of an extruded PLA product. The potential to use such a method as an intelligent sensor for real-time quality analysis is evaluated based on regulatory guidelines for the medical device industry. It is shown that for the predictions to be robust to processing at different times and to slight changes in the processing conditions, the fusion of both NIR and conventional process sensor data is required. Partial least squares (PLS), which is the established 'soft sensing' method in the industry, performs the best of the linear methods but demonstrates poor reliability over the full range of processing conditions. Conversely, both random forest (RF) and support vector regression (SVR) show excellent performance for all criteria when used with a prior principal component (PC) dimension reduction step. While linear methods currently dominate for soft sensing of mixture concentrations in highly conservative, regulated industries such as the medical device industry, this work indicates that nonlinear methods may outperform them in the prediction of mechanical properties from complex physicochemical sensor data. The nonlinear methods show the potential to meet industrial standards for robustness, despite the relatively small amount of training data typically available in high-value material processing.

摘要

聚乳酸(PLA)是一种可植入医疗和药物输送装置中使用的生物可吸收聚合物。与其他生物可吸收聚合物一样,PLA 需要小心处理以避免降解。在这项工作中,我们将过程中的温度、压力和近红外光谱测量与多元回归方法相结合,用于预测挤出 PLA 产品的机械强度。根据医疗器械行业的监管指南,评估了将这种方法用作实时质量分析智能传感器的潜力。结果表明,为了使预测对不同时间的处理和处理条件的微小变化具有鲁棒性,需要融合近红外和常规过程传感器数据。偏最小二乘(PLS)是行业中既定的“软传感”方法,是线性方法中表现最好的,但在整个处理条件范围内可靠性较差。相比之下,随机森林(RF)和支持向量回归(SVR)在使用先前主成分(PC)降维步骤时,对于所有标准都表现出出色的性能。虽然线性方法目前在高度保守的监管行业(如医疗器械行业)中对混合物浓度的软传感占主导地位,但这项工作表明,在预测复杂物理化学传感器数据的机械性能方面,非线性方法可能优于它们。尽管在高价值材料加工中通常可用的训练数据量相对较少,但这些非线性方法具有满足工业标准的鲁棒性的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a12b/9028237/92aa70b727b3/sensors-22-02835-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验