Suppr超能文献

轻量级长短时记忆变分自编码器在工业控制系统中多元时间序列异常检测中的应用

Lightweight Long Short-Term Memory Variational Auto-Encoder for Multivariate Time Series Anomaly Detection in Industrial Control Systems.

机构信息

Fraunhofer Institute for Computer Graphics Research IGD, 64283 Darmstadt, Germany.

Department of Computer Science, Technical University of Darmstadt, 64283 Darmstadt, Germany.

出版信息

Sensors (Basel). 2022 Apr 9;22(8):2886. doi: 10.3390/s22082886.

Abstract

Heterogeneous cyberattacks against industrial control systems (ICSs) have had a strong impact on the physical world in recent decades. Connecting devices to the internet enables new attack surfaces for attackers. The intrusion of ICSs, such as the manipulation of industrial sensory or actuator data, can be the cause for anomalous ICS behaviors. This poses a threat to the infrastructure that is critical for the operation of a modern city. Nowadays, the best techniques for detecting anomalies in ICSs are based on machine learning and, more recently, deep learning. Cybersecurity in ICSs is still an emerging field, and industrial datasets that can be used to develop anomaly detection techniques are rare. In this paper, we propose an unsupervised deep learning methodology for anomaly detection in ICSs, specifically, a lightweight long short-term memory variational auto-encoder (LW-LSTM-VAE) architecture. We successfully demonstrate our solution under two ICS applications, namely, water purification and water distribution plants. Our proposed method proves to be efficient in detecting anomalies in these applications and improves upon reconstruction-based anomaly detection methods presented in previous work. For example, we successfully detected 82.16% of the anomalies in the scenario of the widely used Secure Water Treatment (SWaT) benchmark. The deep learning architecture we propose has the added advantage of being extremely lightweight.

摘要

近几十年来,针对工业控制系统 (ICS) 的异构网络攻击对物理世界产生了强烈影响。将设备连接到互联网为攻击者提供了新的攻击面。ICS 的入侵,例如工业传感器或执行器数据的操纵,可能是 ICS 异常行为的原因。这对现代城市运行所依赖的基础设施构成了威胁。如今,ICS 中异常检测的最佳技术基于机器学习,最近则基于深度学习。ICS 中的网络安全仍然是一个新兴领域,并且很少有可用于开发异常检测技术的工业数据集。在本文中,我们提出了一种用于 ICS 异常检测的无监督深度学习方法,特别是轻量级长短期记忆变分自动编码器 (LW-LSTM-VAE) 架构。我们在两个 ICS 应用程序(即水净化和配水厂)下成功展示了我们的解决方案。我们提出的方法在这些应用程序中的异常检测方面非常有效,并改进了先前工作中提出的基于重建的异常检测方法。例如,我们在广泛使用的 Secure Water Treatment (SWaT) 基准的场景中成功检测到 82.16%的异常。我们提出的深度学习架构具有极其轻量级的优点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c3d/9030796/ed34d9f4413b/sensors-22-02886-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验