Suppr超能文献

从传统正射影像中提取校正后的建筑物轮廓:一种新的工作流程。

Extracting Rectified Building Footprints from Traditional Orthophotos: A New Workflow.

机构信息

School of Geography and Information Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China.

School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430072, China.

出版信息

Sensors (Basel). 2021 Dec 29;22(1):207. doi: 10.3390/s22010207.

Abstract

Deep learning techniques such as convolutional neural networks have largely improved the performance of building segmentation from remote sensing images. However, the images for building segmentation are often in the form of traditional orthophotos, where the relief displacement would cause non-negligible misalignment between the roof outline and the footprint of a building; such misalignment poses considerable challenges for extracting accurate building footprints, especially for high-rise buildings. Aiming at alleviating this problem, a new workflow is proposed for generating rectified building footprints from traditional orthophotos. We first use the facade labels, which are prepared efficiently at low cost, along with the roof labels to train a semantic segmentation network. Then, the well-trained network, which employs the state-of-the-art version of EfficientNet as backbone, extracts the roof segments and the facade segments of buildings from the input image. Finally, after clustering the classified pixels into instance-level building objects and tracing out the roof outlines, an energy function is proposed to drive the roof outline to maximally align with the building footprint; thus, the rectified footprints can be generated. The experiments on the aerial orthophotos covering a high-density residential area in Shanghai demonstrate that the proposed workflow can generate obviously more accurate building footprints than the baseline methods, especially for high-rise buildings.

摘要

深度学习技术,如卷积神经网络,在很大程度上提高了从遥感图像中进行建筑物分割的性能。然而,用于建筑物分割的图像通常是传统正射影像的形式,其中地形位移会导致建筑物的屋顶轮廓和足迹之间出现不可忽略的错位;这种错位给提取准确的建筑物足迹带来了相当大的挑战,尤其是对于高层建筑。针对这个问题,我们提出了一种从传统正射影像生成校正建筑物足迹的新工作流程。我们首先使用高效低成本准备的立面标签以及屋顶标签来训练语义分割网络。然后,经过训练的网络采用最先进版本的 EfficientNet 作为骨干,从输入图像中提取建筑物的屋顶部分和立面部分。最后,对分类像素进行聚类为实例级别的建筑物对象,并追踪屋顶轮廓后,提出了一个能量函数来驱动屋顶轮廓与建筑物足迹最大程度对齐,从而生成校正后的足迹。在覆盖上海高密度住宅区的航空正射影像上的实验表明,与基线方法相比,所提出的工作流程可以生成明显更准确的建筑物足迹,特别是对于高层建筑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7c9d/8749658/67b1a17590b4/sensors-22-00207-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验