Suppr超能文献

基于非负矩阵分解和正则化超分辨率卷积神经网络的 QR 码安全共享。

Secured Secret Sharing of QR Codes Based on Nonnegative Matrix Factorization and Regularized Super Resolution Convolutional Neural Network.

机构信息

Institute of Electrical and Electronics Engineers (IEEE), Aruppukottai 626101, India.

School of Computing Science and Engineering (SCSE), VIT Bhopal University, Bhopal 466114, India.

出版信息

Sensors (Basel). 2022 Apr 12;22(8):2959. doi: 10.3390/s22082959.

Abstract

Advances in information technology have harnessed the application of Quick Response (QR) codes in day-to-day activities, simplifying information exchange. QR codes are witnessed almost everywhere, on consumables, newspapers, information bulletins, etc. The simplicity of QR code creation and ease of scanning with free software have tremendously influenced their wide usage, and since QR codes place information on an object they are a tool for the IoT. Many healthcare IoT applications are deployed with QR codes for data-labeling and quick transfer of clinical data for rapid diagnosis. However, these codes can be duplicated and tampered with easily, attributed to open- source QR code generators and scanners. This paper presents a novel , secret-sharing scheme based on Nonnegative Matrix Factorization (NMF) for secured transfer of QR codes as multiple shares and their reconstruction with a regularized Super Resolution Convolutional Neural Network (SRCNN). This scheme is an alternative to the existing polynomial and visual cryptography-based schemes, exploiting NMF in part-based data representation and structural regularized SRCNN to capture the structural elements of the QR code in the super-resolved image. The experimental results and theoretical analyses show that the proposed method is a potential solution for secured exchange of QR codes with different error correction levels. The security of the proposed approach is evaluated with the difficulty in launching security attacks to recover and decode the secret QR code. The experimental results show that an adversary must try 2 additional combinations of shares and perform 3 × 2 additional computations, compared to a representative approach, to compromise the proposed system.

摘要

信息技术的进步已经利用了快速响应 (QR) 码在日常生活中的应用,简化了信息交换。QR 码几乎无处不在,无论是在消费品、报纸、信息公告等上面都可以看到。QR 码创建简单,使用免费软件扫描也很方便,这极大地影响了它们的广泛使用,而且由于 QR 码将信息放在一个对象上,因此它是物联网的一种工具。许多医疗物联网应用程序都部署了 QR 码,用于数据标记和快速传输临床数据以进行快速诊断。然而,这些代码很容易被复制和篡改,这归因于开源 QR 码生成器和扫描仪。本文提出了一种新颖的基于非负矩阵分解 (NMF) 的秘密共享方案,用于将 QR 码安全地传输为多个份额,并使用正则化超分辨率卷积神经网络 (SRCNN) 对其进行重构。该方案是现有多项式和基于视觉密码术方案的替代方案,利用 NMF 进行基于部分的数据表示和结构正则化 SRCNN 来捕获 QR 码的结构元素在超分辨率图像中。实验结果和理论分析表明,该方法是一种具有不同纠错水平的 QR 码安全交换的潜在解决方案。通过发起安全攻击来恢复和解码秘密 QR 码的难度来评估所提出方法的安全性。实验结果表明,与代表性方法相比,攻击者必须尝试额外的 2 个份额组合,并执行额外的 3×2 次计算,才能危及所提出的系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96e8/9029129/77ceac057fa0/sensors-22-02959-g001.jpg

相似文献

4
7
Convex nonnegative matrix factorization with manifold regularization.具有流形正则化的凸非负矩阵分解。
Neural Netw. 2015 Mar;63:94-103. doi: 10.1016/j.neunet.2014.11.007. Epub 2014 Dec 4.

本文引用的文献

7
Image Super-Resolution Using Deep Convolutional Networks.基于深度卷积网络的图像超分辨率重建。
IEEE Trans Pattern Anal Mach Intell. 2016 Feb;38(2):295-307. doi: 10.1109/TPAMI.2015.2439281.
9
Image super-resolution via sparse representation.基于稀疏表示的图像超分辨率重建。
IEEE Trans Image Process. 2010 Nov;19(11):2861-73. doi: 10.1109/TIP.2010.2050625. Epub 2010 May 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验