Suppr超能文献

深度强化学习在网络切片资源管理中的应用研究综述。

Deep Reinforcement Learning for Resource Management on Network Slicing: A Survey.

机构信息

Departamento de Telemática, Universidad del Cauca, Popayan 190002, Colombia.

出版信息

Sensors (Basel). 2022 Apr 15;22(8):3031. doi: 10.3390/s22083031.

Abstract

Network Slicing and Deep Reinforcement Learning (DRL) are vital enablers for achieving 5G and 6G networks. A 5G/6G network can comprise various network slices from unique or multiple tenants. Network providers need to perform intelligent and efficient resource management to offer slices that meet the quality of service and quality of experience requirements of 5G/6G use cases. Resource management is far from being a straightforward task. This task demands complex and dynamic mechanisms to control admission and allocate, schedule, and orchestrate resources. Intelligent and effective resource management needs to predict the services' demand coming from tenants (each tenant with multiple network slice requests) and achieve autonomous behavior of slices. This paper identifies the relevant phases for resource management in network slicing and analyzes approaches using reinforcement learning (RL) and DRL algorithms for realizing each phase autonomously. We analyze the approaches according to the optimization objective, the network focus (core, radio access, edge, and end-to-end network), the space of states, the space of actions, the algorithms, the structure of deep neural networks, the exploration-exploitation method, and the use cases (or vertical applications). We also provide research directions related to RL/DRL-based network slice resource management.

摘要

网络切片和深度强化学习(DRL)是实现 5G 和 6G 网络的重要推动者。一个 5G/6G 网络可以由来自独特或多个租户的各种网络切片组成。网络提供商需要进行智能且高效的资源管理,以提供满足 5G/6G 用例服务质量和体验质量要求的切片。资源管理远非一项简单的任务。这项任务需要复杂且动态的机制来控制准入和分配、调度和协调资源。智能且高效的资源管理需要预测来自租户的服务需求(每个租户都有多个网络切片请求),并实现切片的自主行为。本文确定了网络切片中资源管理的相关阶段,并分析了使用强化学习(RL)和 DRL 算法来实现每个阶段自主的方法。我们根据优化目标、网络焦点(核心、无线接入、边缘和端到端网络)、状态空间、动作空间、算法、深度神经网络结构、探索-利用方法以及用例(或垂直应用)来分析这些方法。我们还提供了与基于 RL/DRL 的网络切片资源管理相关的研究方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6828/9032530/46a3ce3ada0d/sensors-22-03031-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验