Suppr超能文献

用于多智能体系统的深度强化学习:挑战、解决方案及应用综述

Deep Reinforcement Learning for Multiagent Systems: A Review of Challenges, Solutions, and Applications.

作者信息

Nguyen Thanh Thi, Nguyen Ngoc Duy, Nahavandi Saeid

出版信息

IEEE Trans Cybern. 2020 Sep;50(9):3826-3839. doi: 10.1109/TCYB.2020.2977374. Epub 2020 Mar 20.

Abstract

Reinforcement learning (RL) algorithms have been around for decades and employed to solve various sequential decision-making problems. These algorithms, however, have faced great challenges when dealing with high-dimensional environments. The recent development of deep learning has enabled RL methods to drive optimal policies for sophisticated and capable agents, which can perform efficiently in these challenging environments. This article addresses an important aspect of deep RL related to situations that require multiple agents to communicate and cooperate to solve complex tasks. A survey of different approaches to problems related to multiagent deep RL (MADRL) is presented, including nonstationarity, partial observability, continuous state and action spaces, multiagent training schemes, and multiagent transfer learning. The merits and demerits of the reviewed methods will be analyzed and discussed with their corresponding applications explored. It is envisaged that this review provides insights about various MADRL methods and can lead to the future development of more robust and highly useful multiagent learning methods for solving real-world problems.

摘要

强化学习(RL)算法已经存在了几十年,并被用于解决各种序列决策问题。然而,这些算法在处理高维环境时面临着巨大挑战。深度学习的最新发展使强化学习方法能够为复杂且有能力的智能体驱动最优策略,这些智能体能够在这些具有挑战性的环境中高效执行任务。本文探讨了深度强化学习的一个重要方面,即涉及多个智能体需要进行通信和协作以解决复杂任务的情况。本文对与多智能体深度强化学习(MADRL)相关问题的不同方法进行了综述,包括非平稳性、部分可观测性、连续状态和动作空间、多智能体训练方案以及多智能体迁移学习。将分析和讨论所综述方法的优缺点,并探索它们的相应应用。预计本综述能够提供有关各种MADRL方法的见解,并能引领未来开发出更强大、更实用的多智能体学习方法,以解决现实世界中的问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验