Suppr超能文献

使用可解释人工智能(XAI)解释从深度神经网络获得的丙氨酸二肽异构化反应坐标。

Explaining reaction coordinates of alanine dipeptide isomerization obtained from deep neural networks using Explainable Artificial Intelligence (XAI).

作者信息

Kikutsuji Takuma, Mori Yusuke, Okazaki Kei-Ichi, Mori Toshifumi, Kim Kang, Matubayasi Nobuyuki

机构信息

Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.

Research Center for Computational Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan.

出版信息

J Chem Phys. 2022 Apr 21;156(15):154108. doi: 10.1063/5.0087310.

Abstract

A method for obtaining appropriate reaction coordinates is required to identify transition states distinguishing the product and reactant in complex molecular systems. Recently, abundant research has been devoted to obtaining reaction coordinates using artificial neural networks from deep learning literature, where many collective variables are typically utilized in the input layer. However, it is difficult to explain the details of which collective variables contribute to the predicted reaction coordinates owing to the complexity of the nonlinear functions in deep neural networks. To overcome this limitation, we used Explainable Artificial Intelligence (XAI) methods of the Local Interpretable Model-agnostic Explanation (LIME) and the game theory-based framework known as Shapley Additive exPlanations (SHAP). We demonstrated that XAI enables us to obtain the degree of contribution of each collective variable to reaction coordinates that is determined by nonlinear regressions with deep learning for the committor of the alanine dipeptide isomerization in vacuum. In particular, both LIME and SHAP provide important features to the predicted reaction coordinates, which are characterized by appropriate dihedral angles consistent with those previously reported from the committor test analysis. The present study offers an AI-aided framework to explain the appropriate reaction coordinates, which acquires considerable significance when the number of degrees of freedom increases.

摘要

在复杂分子系统中,需要一种获取合适反应坐标的方法来识别区分产物和反应物的过渡态。最近,大量研究致力于利用深度学习文献中的人工神经网络来获取反应坐标,其中输入层通常使用许多集体变量。然而,由于深度神经网络中非线性函数的复杂性,很难解释哪些集体变量对预测的反应坐标有贡献的细节。为了克服这一限制,我们使用了局部可解释模型无关解释(LIME)的可解释人工智能(XAI)方法以及称为夏普利加性解释(SHAP)的基于博弈论的框架。我们证明,XAI使我们能够获得每个集体变量对反应坐标的贡献程度,该贡献程度是通过对真空中丙氨酸二肽异构化的反应几率进行深度学习的非线性回归确定的。特别是,LIME和SHAP都为预测的反应坐标提供了重要特征,其特征是与先前反应几率测试分析报告的二面角一致的合适二面角。本研究提供了一个人工智能辅助框架来解释合适的反应坐标,当自由度数量增加时,该框架具有相当重要的意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验