Nalbandian Minas, Zhao Mingming, Kato Hiroki, Jonouchi Tatsuya, Nakajima-Koyama May, Yamamoto Takuya, Sakurai Hidetoshi
Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
Asahi Kasei Co., Ltd., Tokyo, Japan.
Life Sci Alliance. 2022 Apr 22;5(8). doi: 10.26508/lsa.202101312. Print 2022 Aug.
Human pluripotent stem cell-derived muscle progenitor cells (hiPSC-MuPCs) resemble fetal-stage muscle progenitor cells and possess in vivo regeneration capacity. However, the heterogeneity of hiPSC-MuPCs is unknown, which could impact the regenerative potential of these cells. Here, we established an hiPSC-MuPC atlas by performing single-cell RNA sequencing of hiPSC-MuPC cultures. Bioinformatic analysis revealed four cell clusters for hiPSC-MuPCs: , , , and Using FGFR4 as a marker for and cells and CD36 as a marker for and cells, we found that FGFR4+ cells possess a higher regenerative capacity than CD36 cells. We also identified the family of E2F transcription factors are key regulators of hiPSC-MuPC proliferation. Our study provides insights on the purification of hiPSC-MuPCs with higher regenerative potential and increases the understanding of the transcriptional regulation of hiPSC-MuPCs.
人多能干细胞衍生的肌肉祖细胞(hiPSC-MuPCs)类似于胎儿期肌肉祖细胞,并具有体内再生能力。然而,hiPSC-MuPCs的异质性尚不清楚,这可能会影响这些细胞的再生潜力。在这里,我们通过对hiPSC-MuPC培养物进行单细胞RNA测序建立了一个hiPSC-MuPC图谱。生物信息学分析揭示了hiPSC-MuPCs的四个细胞簇: 、 、 和 。使用FGFR4作为 和 细胞的标志物,以及CD36作为 和 细胞的标志物,我们发现FGFR4+细胞比CD36+细胞具有更高的再生能力。我们还确定E2F转录因子家族是hiPSC-MuPC增殖的关键调节因子。我们的研究为纯化具有更高再生潜力的hiPSC-MuPCs提供了见解,并增进了对hiPSC-MuPCs转录调控的理解。