Suppr超能文献

通过机械化学法对氢键有机骨架及其衍生物进行网状合成

Reticular Synthesis of Hydrogen-Bonded Organic Frameworks and Their Derivatives via Mechanochemistry.

作者信息

Qin Wei-Kang, Si Duan-Hui, Yin Qi, Gao Xiang-Yu, Huang Qian-Qian, Feng Ya-Nan, Xie Lei, Zhang Shuo, Huang Xin-Song, Liu Tian-Fu, Cao Rong

机构信息

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou, 350002, P. R. China.

University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China.

出版信息

Angew Chem Int Ed Engl. 2022 Jul 4;61(27):e202202089. doi: 10.1002/anie.202202089. Epub 2022 May 5.

Abstract

Rational synthesis of hydrogen-bonded organic frameworks (HOFs) with predicted structure has been a long-term challenge. Herein, by using the efficient, simple, low-cost, and scalable mechanosynthesis, we demonstrate that reticular chemistry is applicable to HOF assemblies based on building blocks with different geometry, connectivity, and functionality. The obtained crystalline HOFs show uniform nano-sized morphology, which is challenging or unachievable for conventional solution-based methods. Furthermore, the one-pot mechanosynthesis generated a series of Pd@HOF composites with noticeably different CO oxidation activities. In situ DRIFTS studies indicate that the most efficient composite, counterintuitively, shows the weakest CO affinity to Pd sites while the strongest CO affinity to HOF matrix, revealing the vital role of porous matrix to the catalytic performance. This work paves a new avenue for rational synthesis of HOF and HOF-based composites for broad application potential.

摘要

合理合成具有预测结构的氢键有机框架(HOFs)一直是一项长期挑战。在此,通过使用高效、简单、低成本且可扩展的机械合成方法,我们证明了网状化学适用于基于具有不同几何形状、连接性和功能的构建块的HOF组装。所获得的结晶HOF呈现出均匀的纳米尺寸形态,这对于传统的基于溶液的方法来说具有挑战性或难以实现。此外,一锅法机械合成产生了一系列具有明显不同CO氧化活性的Pd@HOF复合材料。原位漫反射红外傅里叶变换光谱(DRIFTS)研究表明,最有效的复合材料,与直觉相反,对Pd位点的CO亲和力最弱,而对HOF基质的CO亲和力最强,揭示了多孔基质对催化性能的关键作用。这项工作为合理合成具有广泛应用潜力的HOF和基于HOF的复合材料开辟了一条新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验