Center for Clinical and Translational Research, Maine Medical Center Research Institute, Scarborough, ME, United States.
The Jackson Laboratory, Bar Harbor, ME, United States.
Curr Top Dev Biol. 2022;148:1-12. doi: 10.1016/bs.ctdb.2022.02.012. Epub 2022 Mar 24.
For many years, the laboratory mouse has been the favored model organism to study mammalian development, biology and disease. Among its advantages for these studies are its close concordance with human biology, the syntenic relationship between the mouse and other mammalian genomes, the existence of many inbred strains, its short gestation period, its relatively low cost for housing and husbandry, and the wide array of tools for genome modification, mutagenesis, and for cryopreserving embryos, sperm and eggs. The advent of CRISPR genome modification techniques has considerably broadened the landscape of model organisms available for study, including other mammalian species. However, the mouse remains the most popular and utilized system to model human development, biology, and disease processes. In this review, we will briefly summarize the long history of mice as a preferred mammalian genetic and model system, and review current large-scale mutagenesis efforts using genome modification to produce improved models for mammalian development and disease.
多年来,实验室小鼠一直是研究哺乳动物发育、生物学和疾病的首选模式生物。它在这些研究中的优势包括与人类生物学的密切一致性、小鼠与其他哺乳动物基因组之间的同线性关系、许多近交系的存在、其妊娠周期短、饲养成本相对较低,以及广泛的基因组修饰、诱变和胚胎、精子和卵子冷冻保存工具。CRISPR 基因组修饰技术的出现极大地拓宽了可供研究的模式生物的范围,包括其他哺乳动物物种。然而,小鼠仍然是最受欢迎和最常用的系统,用于模拟人类发育、生物学和疾病过程。在这篇综述中,我们将简要总结小鼠作为首选哺乳动物遗传和模型系统的悠久历史,并回顾当前使用基因组修饰进行大规模诱变的努力,以产生用于哺乳动物发育和疾病的改良模型。