Suppr超能文献

利用人工智能在增强CT中预测舌癌的增殖情况

Predicting the Proliferation of Tongue Cancer With Artificial Intelligence in Contrast-Enhanced CT.

作者信息

Sun Ting-Guan, Mao Liang, Chai Zi-Kang, Shen Xue-Meng, Sun Zhi-Jun

机构信息

The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.

Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China.

出版信息

Front Oncol. 2022 Apr 8;12:841262. doi: 10.3389/fonc.2022.841262. eCollection 2022.

Abstract

Tongue squamous cell carcinoma (TSCC) is the most common oral malignancy. The proliferation status of tumor cells as indicated with the Ki-67 index has great impact on tumor microenvironment, therapeutic strategy making, and patients' prognosis. However, the most commonly used method to obtain the proliferation status is through biopsy or surgical immunohistochemical staining. Noninvasive method before operation remains a challenge. Hence, in this study, we aimed to validate a novel method to predict the proliferation status of TSCC using contrast-enhanced CT (CECT) based on artificial intelligence (AI). CECT images of the lesion area from 179 TSCC patients were analyzed using a convolutional neural network (CNN). Patients were divided into a high proliferation status group and a low proliferation status group according to the Ki-67 index of patients with the median 20% as cutoff. The model was trained and then the test set was automatically classified. Results of the test set showed an accuracy of 65.38% and an AUC of 0.7172, suggesting that the majority of samples were classified correctly and the model was stable. Our study provided a possibility of predicting the proliferation status of TSCC using AI in CECT noninvasively before operation.

摘要

舌鳞状细胞癌(TSCC)是最常见的口腔恶性肿瘤。用Ki-67指数表示的肿瘤细胞增殖状态对肿瘤微环境、治疗策略制定和患者预后有很大影响。然而,获得增殖状态最常用的方法是通过活检或手术免疫组织化学染色。术前的非侵入性方法仍然是一个挑战。因此,在本研究中,我们旨在验证一种基于人工智能(AI)的使用对比增强CT(CECT)预测TSCC增殖状态的新方法。使用卷积神经网络(CNN)分析了179例TSCC患者病变区域的CECT图像。根据Ki-67指数,以中位数20%为界值将患者分为高增殖状态组和低增殖状态组。对模型进行训练,然后对测试集进行自动分类。测试集结果显示准确率为65.38%,AUC为0.7172,表明大多数样本分类正确且模型稳定。我们的研究提供了一种在术前通过CECT使用人工智能非侵入性预测TSCC增殖状态的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ee03/9026338/324b10f28193/fonc-12-841262-g001.jpg

相似文献

1
Predicting the Proliferation of Tongue Cancer With Artificial Intelligence in Contrast-Enhanced CT.
Front Oncol. 2022 Apr 8;12:841262. doi: 10.3389/fonc.2022.841262. eCollection 2022.
4
CRBP-1 over-expression is associated with poor prognosis in tongue squamous cell carcinoma.
BMC Cancer. 2018 May 2;18(1):514. doi: 10.1186/s12885-018-4249-1.
5
High expression of Notch2 drives tongue squamous cell carcinoma carcinogenesis.
Exp Cell Res. 2021 Feb 1;399(1):112452. doi: 10.1016/j.yexcr.2020.112452. Epub 2020 Dec 28.
6
MicroRNA-27a promotes tumorigenesis in tongue squamous cell carcinoma by enhancing proliferation, migration and suppressing apoptosis.
Eur Arch Otorhinolaryngol. 2021 Nov;278(11):4557-4567. doi: 10.1007/s00405-021-06837-y. Epub 2021 Apr 28.
9
[Application of convolutional neural network to risk evaluation of positive circumferential resection margin of rectal cancer by magnetic resonance imaging].
Zhonghua Wei Chang Wai Ke Za Zhi. 2020 Jun 25;23(6):572-577. doi: 10.3760/cma.j.cn.441530-20191023-00460.
10
A novel lightweight deep convolutional neural network for early detection of oral cancer.
Oral Dis. 2022 May;28(4):1123-1130. doi: 10.1111/odi.13825. Epub 2021 Mar 5.

引用本文的文献

1
Artificial Intelligence in the Diagnosis of Tongue Cancer: A Systematic Review with Meta-Analysis.
Biomedicines. 2025 Jul 30;13(8):1849. doi: 10.3390/biomedicines13081849.
3
AI illuminates paths in oral cancer: transformative insights, diagnostic precision, and personalized strategies.
EXCLI J. 2024 Sep 3;23:1091-1116. doi: 10.17179/excli2024-7253. eCollection 2024.
4
Artificial intelligence in early diagnosis and prevention of oral cancer.
Asia Pac J Oncol Nurs. 2022 Aug 24;9(12):100133. doi: 10.1016/j.apjon.2022.100133. eCollection 2022 Dec.

本文引用的文献

1
Ki-67 and breast cancer prognosis: does it matter if Ki-67 level is examined using preoperative biopsy or postoperative specimen?
Breast Cancer Res Treat. 2022 Apr;192(2):343-352. doi: 10.1007/s10549-022-06519-1. Epub 2022 Jan 13.
2
CT Radiomics Model for Predicting the Ki-67 Index of Lung Cancer: An Exploratory Study.
Front Oncol. 2021 Oct 11;11:743490. doi: 10.3389/fonc.2021.743490. eCollection 2021.
3
Ki67 Labelling Index predicts clinical outcome and survival in oral squamous cell carcinoma.
J Appl Oral Sci. 2021 Mar 1;29:e20200751. doi: 10.1590/1678-7757-2020-0751. eCollection 2021.
5
Measurement variations of MRI and CT in the assessment of tumor depth of invasion in oral cancer: A retrospective study.
Eur J Radiol. 2021 Feb;135:109480. doi: 10.1016/j.ejrad.2020.109480. Epub 2020 Dec 15.
6
Biopsy quality is essential for preoperative prognostication in oral tongue cancer.
APMIS. 2021 Mar;129(3):118-127. doi: 10.1111/apm.13104. Epub 2020 Dec 28.
7
Radiogenomics for predicting p53 status, PD-L1 expression, and prognosis with machine learning in pancreatic cancer.
Br J Cancer. 2020 Oct;123(8):1253-1261. doi: 10.1038/s41416-020-0997-1. Epub 2020 Jul 21.
8
Artificial Intelligence in Dentistry: Chances and Challenges.
J Dent Res. 2020 Jul;99(7):769-774. doi: 10.1177/0022034520915714. Epub 2020 Apr 21.
9
Improving Oral Cancer Outcomes with Imaging and Artificial Intelligence.
J Dent Res. 2020 Mar;99(3):241-248. doi: 10.1177/0022034520902128.
10
Multiple skin lesions diagnostics via integrated deep convolutional networks for segmentation and classification.
Comput Methods Programs Biomed. 2020 Jul;190:105351. doi: 10.1016/j.cmpb.2020.105351. Epub 2020 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验