Suppr超能文献

用于SARS-CoV-2 S蛋白免疫测定的电热流动生物传感器的设计参数优化

Design parameters optimization of an electrothermal flow biosensor for the SARS-CoV-2 S protein immunoassay.

作者信息

Kaziz Sameh, Ben Mariem Ibrahim, Echouchene Fraj, Gazzah Mohamed Hichem, Belmabrouk Hafedh

机构信息

Quantum and Statistical Physics Laboratory, Faculty of Sciences of Monastir, University of Monastir, Environment Boulevard, 5019 Monastir, Tunisia.

Higher National Engineering School of Tunis, Taha Hussein Montfleury Boulevard, University of Tunis, 1008 Tunis, Tunisia.

出版信息

Indian J Phys Proc Indian Assoc Cultiv Sci (2004). 2022;96(14):4091-4101. doi: 10.1007/s12648-022-02360-w. Epub 2022 Apr 18.

Abstract

To combat the coronavirus disease 2019 (COVID-19), great efforts have been made by scientists around the world to improve the performance of detection devices so that they can efficiently and quickly detect the virus responsible for this disease. In this context we performed 2D finite element simulation on the kinetics of SARS-CoV-2 S protein binding reaction of a biosensor using the alternating current electrothermal (ACET) effect. The ACET flow can produce vortex patterns, thereby improving the transportation of the target analyte to the binding surface and thus enhancing the performance of the biosensor. Optimization of some design parameters concerning the microchannel height and the reaction surface, such as its length as well as its position on the top wall of the microchannel, in order to improve the biosensor efficiency, was studied. The results revealed that the detection time can be improved by 55% with an applied voltage of 10 and an operating frequency of 150 kHz and that the decrease in the height of the microchannel and in the length of the binding surface can lead to an increase in the rate of the binding reaction and therefore decrease the biosensor response time. Also, moving the sensitive surface from an optimal position, located in front of the electrodes, decreases the performance of the device.

摘要

为抗击2019冠状病毒病(COVID-19),世界各地的科学家们付出了巨大努力来提高检测设备的性能,以便它们能够高效、快速地检测出引发这种疾病的病毒。在此背景下,我们利用交流电热(ACET)效应,对生物传感器的严重急性呼吸综合征冠状病毒2(SARS-CoV-2)S蛋白结合反应动力学进行了二维有限元模拟。ACET流可产生涡旋模式,从而改善目标分析物向结合表面的传输,进而提高生物传感器的性能。为了提高生物传感器的效率,研究了一些与微通道高度和反应表面有关的设计参数的优化,如反应表面的长度及其在微通道顶壁上的位置。结果表明,在施加电压为10V、工作频率为150kHz的情况下,检测时间可缩短55%,微通道高度和结合表面长度的减小可导致结合反应速率提高,从而缩短生物传感器的响应时间。此外,将敏感表面从位于电极前方的最佳位置移开,会降低设备的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fe/9013635/6395729acf5e/12648_2022_2360_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验