Crippa Gianluca, Elgindi Tarek, Iyer Gautam, Mazzucato Anna L
Department of Mathematics and Computer Science, University of Basel, Spiegelgasse 1, 4051 Basel, Switzerland.
Mathematics Department, Duke University, 120 Science Drive, Durham, NC 27708-0320, USA.
Philos Trans A Math Phys Eng Sci. 2022 Jun 13;380(2225):20210024. doi: 10.1098/rsta.2021.0024. Epub 2022 Apr 25.
We consider transport of a passive scalar advected by an irregular divergence-free vector field. Given any non-constant initial data [Formula: see text], [Formula: see text], we construct a divergence-free advecting velocity field [Formula: see text] (depending on [Formula: see text]) for which the unique weak solution to the transport equation does not belong to [Formula: see text] for any positive time. The velocity field [Formula: see text] is smooth, except at one point, controlled uniformly in time, and belongs to almost every Sobolev space [Formula: see text] that does not embed into the Lipschitz class. The velocity field [Formula: see text] is constructed by pulling back and rescaling a sequence of sine/cosine shear flows on the torus that depends on the initial data. This loss of regularity result complements that in , 5(1):Paper No. 9, 19, 2019. This article is part of the theme issue 'Mathematical problems in physical fluid dynamics (part 1)'.
我们考虑由一个不规则的无散度向量场平流的被动标量的输运问题。给定任意非恒定的初始数据[公式:见正文],[公式:见正文],我们构造一个无散度的平流速度场[公式:见正文](依赖于[公式:见正文]),对于该速度场,输运方程的唯一弱解在任何正时间都不属于[公式:见正文]。速度场[公式:见正文]除在一点外是光滑的,在时间上一致受控,并且属于几乎每个不嵌入到Lipschitz类的Sobolev空间[公式:见正文]。速度场[公式:见正文]是通过对环面上依赖于初始数据的一系列正弦/余弦剪切流进行拉回和重新缩放而构造的。这种正则性损失结果补充了[文献,5(1):论文编号9,19,2019]中的结果。本文是主题为“物理流体动力学中的数学问题(第1部分)”的一部分。