Suppr超能文献

静电相互作用与细菌细胞包膜调节两种新型肽聚糖水解酶的裂解活性。

Electrostatic Interaction with the Bacterial Cell Envelope Tunes the Lytic Activity of Two Novel Peptidoglycan Hydrolases.

机构信息

International Institute of Molecular and Cell Biologygrid.419362.b in Warsaw, Warsaw, Poland.

Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland.

出版信息

Microbiol Spectr. 2022 Jun 29;10(3):e0045522. doi: 10.1128/spectrum.00455-22. Epub 2022 Apr 25.

Abstract

Peptidoglycan (PG) hydrolases, due to their crucial role in the metabolism of the bacterial cell wall (CW), are increasingly being considered suitable targets for therapies, and a potent alternative to conventional antibiotics. In the light of contradictory data reported, detailed mechanism of regulation of enzymes activity based on electrostatic interactions between hydrolase molecule and bacterial CW surface remains unknown. Here, we report a comprehensive study on this phenomenon using as a model two novel PG hydrolases, SpM23_A, and SpM23_B, which although share the same bacterial host, similarities in sequence conservation, domain architecture, and structure, display surprisingly distinct net charges (in 2D electrophoresis, pI 6.8, and pI 9.7, respectively). We demonstrate a strong correlation between hydrolases surface net charge and the enzymes activity by modulating the charge of both, enzyme molecule and bacterial cell surface. Teichoic acids, anionic polymers present in the bacterial CW, are shown to be involved in the mechanism of enzymes activity regulation by the electrostatics-based interplay between charged bacterial envelope and PG hydrolases. These data serve as a hint for the future development of chimeric PG hydrolases of desired antimicrobial specificity. This study shows direct relationship between the surface charge of two recently described enzymes, SpM23_A and SpM23_B, and bacterial cell walls. We demonstrate that by (i) surface charge probing of bacterial strains collection, (ii) reduction of the net charge of the positively charged enzyme, and (iii) altering the net charge of the bacterial surface by modifying the content and composition of teichoic acids. In all cases, we observed that lytic activity and binding strength of SpM23 enzymes, are regulated by electrostatic interactions with the bacterial cell envelope and that this interaction contributes to the determination of the spectrum of susceptible bacterial species. Moreover, we revealed the regulatory role of charged cell wall components, namely, teichoic and lipoteichoic acids, over the SpM23 enzymes. We believe that our findings make an important contribution to understand the means of hydrolases activity regulation in the complex environment of the bacterial cell wall.

摘要

肽聚糖 (PG) 水解酶由于其在细菌细胞壁 (CW) 代谢中的关键作用,越来越被认为是治疗的合适靶点,是传统抗生素的有力替代品。鉴于报道的矛盾数据,基于水解酶分子与细菌 CW 表面之间的静电相互作用的酶活性的详细调节机制仍然未知。在这里,我们使用两种新型 PG 水解酶 SpM23_A 和 SpM23_B 作为模型对此现象进行了全面研究,尽管它们具有相同的细菌宿主,但在序列保守性、结构域架构和结构上存在相似之处,但净电荷却截然不同(在二维电泳中,pI 分别为 6.8 和 9.7)。我们通过调节酶分子和细菌细胞表面的电荷,证明了水解酶表面净电荷与酶活性之间存在很强的相关性。细菌 CW 中存在的带负电荷的多糖,即磷壁酸,被证明参与了酶活性调节的机制,这是基于带电荷的细菌包膜与 PG 水解酶之间的静电相互作用。这些数据为未来开发具有所需抗菌特异性的嵌合 PG 水解酶提供了线索。 本研究表明,最近描述的两种酶 SpM23_A 和 SpM23_B 的表面电荷与细菌细胞壁之间存在直接关系。我们证明,通过(i)对细菌菌株集合进行表面电荷探测,(ii)降低带正电荷的酶的净电荷,以及(iii)通过改变磷壁酸的含量和组成来改变细菌表面的净电荷,在所有情况下,我们观察到 SpM23 酶的裂解活性和结合强度受与细菌细胞 envelope 的静电相互作用调节,并且这种相互作用有助于确定敏感细菌物种的范围。此外,我们揭示了带电荷的细胞壁成分,即磷壁酸和脂磷壁酸,对 SpM23 酶的调节作用。我们相信,我们的研究结果对理解水解酶在细菌细胞壁复杂环境中的活性调节机制做出了重要贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2dca/9241647/cb69c061f6e4/spectrum.00455-22-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验