Suppr超能文献

多组学分析揭示了与 COVID-19 及 COVID-19 严重程度相关的富集途径。

Multi-omic analysis reveals enriched pathways associated with COVID-19 and COVID-19 severity.

机构信息

Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada.

Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America.

出版信息

PLoS One. 2022 Apr 25;17(4):e0267047. doi: 10.1371/journal.pone.0267047. eCollection 2022.

Abstract

COVID-19 is a disease characterized by its seemingly unpredictable clinical outcomes. In order to better understand the molecular signature of the disease, a recent multi-omics study was done which looked at correlations between biomolecules and used a tree- based machine learning approach to predict clinical outcomes. This study specifically looked at patients admitted to the hospital experiencing COVID-19 or COVID-19 like symptoms. In this paper we examine the same multi-omics data, however we take a different approach, and we identify stable molecules of interest for further pathway analysis. We used stability selection, regularized regression models, enrichment analysis, and principal components analysis on proteomics, metabolomics, lipidomics, and RNA sequencing data, and we determined key molecules and biological pathways in disease severity, and disease status. In addition to the individual omics analyses, we perform the integrative method Sparse Multiple Canonical Correlation Analysis to analyse relationships of the different view of data. Our findings suggest that COVID-19 status is associated with the cell cycle and death, as well as the inflammatory response. This relationship is reflected in all four sets of molecules analyzed. We further observe that the metabolic processes, particularly processes to do with vitamin absorption and cholesterol are implicated in COVID-19 status and severity.

摘要

COVID-19 是一种以其看似不可预测的临床结果为特征的疾病。为了更好地了解疾病的分子特征,最近进行了一项多组学研究,该研究观察了生物分子之间的相关性,并使用基于树的机器学习方法来预测临床结果。这项研究特别关注因 COVID-19 或类似 COVID-19 症状而住院的患者。在本文中,我们检查了相同的多组学数据,但我们采用了不同的方法,确定了稳定的感兴趣分子,以便进一步进行途径分析。我们使用稳定性选择、正则化回归模型、富集分析和主成分分析对蛋白质组学、代谢组学、脂质组学和 RNA 测序数据进行了分析,并确定了疾病严重程度和疾病状态的关键分子和生物学途径。除了个体组学分析外,我们还进行了集成方法稀疏多重典型相关分析,以分析不同数据视图之间的关系。我们的研究结果表明,COVID-19 状态与细胞周期和死亡以及炎症反应有关。这种关系反映在分析的四组分子中。我们进一步观察到,代谢过程,特别是与维生素吸收和胆固醇有关的代谢过程,与 COVID-19 状态和严重程度有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c545/9038205/3d47e7a783d8/pone.0267047.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验