Suppr超能文献

扫描电子显微镜图像的去噪处理以增强生物超微结构。

Denoising of scanning electron microscope images for biological ultrastructure enhancement.

机构信息

Institute of Automation, Chinese Academy of Sciences, Beijing 100190, P. R. China.

School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing 100190, P. R. China.

出版信息

J Bioinform Comput Biol. 2022 Jun;20(3):2250007. doi: 10.1142/S021972002250007X. Epub 2022 Apr 23.

Abstract

Scanning electron microscopy (SEM) is of great significance for analyzing the ultrastructure. However, due to the requirements of data throughput and electron dose of biological samples in the imaging process, the SEM image of biological samples is often occupied by noise which severely affects the observation of ultrastructure. Therefore, it is necessary to analyze and establish a noise model of SEM and propose an effective denoising algorithm that can preserve the ultrastructure. We first investigated the noise source of SEM images and introduced a signal-related SEM noise model. Then, we validated the effectiveness of the noise model through experiments, which are designed with standard samples to reflect the relation between real signal intensity and noise. Based on the SEM noise model and traditional variance stabilization denoising strategy, we proposed a novel, two-stage denoising method. In the first stage variance stabilization, our VS-Net realizes the separation of signal-dependent noise and signal in the SEM image. In the second stage denoising, our D-Net employs the structure of U-Net and combines the attention mechanism to achieve efficient noise removal. Compared with other existing denoising methods for SEM images, our proposed method is more competitive in objective evaluation and visual effects. Source code is available on GitHub (https://github.com/VictorCSheng/VSID-Net).

摘要

扫描电子显微镜(SEM)对于分析超微结构具有重要意义。然而,由于生物样本在成像过程中数据吞吐量和电子剂量的要求,生物样本的 SEM 图像常常被噪声占据,这严重影响了超微结构的观察。因此,有必要分析和建立 SEM 的噪声模型,并提出一种有效的去噪算法,以保留超微结构。我们首先研究了 SEM 图像的噪声源,并引入了一种与信号相关的 SEM 噪声模型。然后,我们通过设计带有标准样本的实验验证了噪声模型的有效性,这些实验旨在反映真实信号强度与噪声之间的关系。基于 SEM 噪声模型和传统的方差稳定化去噪策略,我们提出了一种新颖的、两阶段去噪方法。在第一阶段方差稳定化中,我们的 VS-Net 实现了 SEM 图像中信号相关噪声与信号的分离。在第二阶段去噪中,我们的 D-Net 采用 U-Net 的结构,并结合注意力机制,实现了高效的噪声去除。与其他现有的 SEM 图像去噪方法相比,我们提出的方法在客观评价和视觉效果方面更具竞争力。源代码可在 GitHub(https://github.com/VictorCSheng/VSID-Net)上获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验