Suppr超能文献

M-Denoiser:用于真实世界光学和电子显微镜数据的无监督图像去噪。

M-Denoiser: Unsupervised image denoising for real-world optical and electron microscopy data.

机构信息

Department of Computer Science, City University of Hong Kong, Hong Kong, China.

Noah's Ark Lab, Huawei Technologies, Hong Kong, China.

出版信息

Comput Biol Med. 2023 Sep;164:107308. doi: 10.1016/j.compbiomed.2023.107308. Epub 2023 Jul 29.

Abstract

Real-world microscopy data have a large amount of noise due to the limited light/electron that can be used to capture images. The noise of microscopy data is composed of signal-dependent shot noise and signal-independent read noise, and the Poisson-Gaussian noise model is usually used to describe the noise distribution. Meanwhile, the noise is spatially correlated because of the data acquisition process. Due to the lack of clean ground truth, unsupervised and self-supervised denoising algorithms in computer vision shed new light on tackling such tasks by utilizing paired noisy images or one single noisy image. However, they usually make the assumption that the noise is signal-independent or pixel-wise independent, which contradicts with the actual case. Hence, we propose M-Denoiser for denoising real-world microscopy data in an unsupervised manner. Firstly, the shatter module is used to break the dependency and correlation before denoising. Secondly, a novelly designed unsupervised training loss based on a pair of noisy images is proposed for real-world microscopy data. For evaluation, we train our model on optical and electron microscopy datasets. The experimental results show that M-Denoiser achieves the best performance both quantitatively and qualitatively compared with all the baselines.

摘要

由于用于捕获图像的光/电子有限,真实世界的显微镜数据会存在大量噪声。显微镜数据的噪声由依赖于信号的散粒噪声和不依赖于信号的读取噪声组成,通常使用泊松-高斯噪声模型来描述噪声分布。同时,由于数据采集过程,噪声在空间上是相关的。由于缺乏干净的地面实况,计算机视觉中的无监督和自监督去噪算法通过利用成对的有噪声图像或单个有噪声图像为解决此类任务提供了新的思路。然而,它们通常假设噪声是不依赖于信号的或像素独立的,这与实际情况不符。因此,我们提出了 M-Denoiser 来对真实世界的显微镜数据进行无监督去噪。首先,使用破碎模块在去噪前打破依赖关系和相关性。其次,针对真实世界的显微镜数据,提出了一种新颖的基于一对有噪声图像的无监督训练损失。为了进行评估,我们在光学和电子显微镜数据集上训练我们的模型。实验结果表明,与所有基线相比,M-Denoiser 在定量和定性方面都取得了最佳性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验