School of Computer and Information Technology, Liaoning Normal University, Dalian, Liaoning, China.
Department of Information Technology, School of Business Information Technology, University of Economics Ho Chi Minh City, Ho Chi Minh City, Vietnam.
J Xray Sci Technol. 2022;30(3):531-547. doi: 10.3233/XST-211098.
In the process of medical images acquisition, the unknown mixed noise will affect image quality. However, the existing denoising methods usually focus on the known noise distribution.
In order to remove the unknown real noise in low-dose CT images (LDCT), a two-step deep learning framework is proposed in this study, which is called Noisy Generation-Removal Network (NGRNet).
Firstly, the output results of L0 Gradient Minimization are used as the labels of a dental CT image dataset to form a pseudo-image pair with the real dental CT images, which are used to train the noise generation network to estimate real noise distribution. Then, for the lung CT images of the LIDC/IDRI database, we migrate the real noise to the noise-free lung CT images, to construct a new almost-real noisy images dataset. Since dental images and lung images are all CT images, this migration can be achieved. The denoising network is trained to realize the denoising of real LDCT for dental images by using this dataset but can extend for any low-dose CT images.
To prove the effectiveness of our NGRNet, we conduct experiments on lung CT images with synthetic noise and tooth CT images with real noise. For synthetic noise image datasets, experimental results show that NGRNet is superior to existing denoising methods in terms of visual effect and exceeds 0.13dB in the peak signal-to-noise ratio (PSNR). For real noisy image datasets, the proposed method can achieve the best visual denoising effect.
The proposed method can retain more details and achieve impressive denoising performance.
在医学图像获取过程中,未知混合噪声会影响图像质量。然而,现有的去噪方法通常侧重于已知噪声分布。
为了去除低剂量 CT 图像(LDCT)中的未知真实噪声,本研究提出了一种两步深度学习框架,称为噪声生成-去除网络(NGRNet)。
首先,将 L0 梯度最小化的输出结果用作牙科 CT 图像数据集的标签,与真实牙科 CT 图像形成一对伪图像,用于训练噪声生成网络以估计真实噪声分布。然后,对于 LIDC/IDRI 数据库的肺部 CT 图像,我们将真实噪声迁移到无噪声的肺部 CT 图像中,构建一个新的几乎真实噪声图像数据集。由于牙科图像和肺部图像都是 CT 图像,这种迁移是可以实现的。使用这个数据集训练去噪网络,实现对牙科真实 LDCT 的去噪,但可以扩展到任何低剂量 CT 图像。
为了证明我们的 NGRNet 的有效性,我们在具有合成噪声的肺部 CT 图像和具有真实噪声的牙齿 CT 图像上进行了实验。对于合成噪声图像数据集,实验结果表明,NGRNet 在视觉效果方面优于现有的去噪方法,在峰值信噪比(PSNR)方面超过 0.13dB。对于真实噪声图像数据集,所提出的方法可以实现最佳的视觉去噪效果。
所提出的方法可以保留更多细节,并实现令人印象深刻的去噪性能。