Suppr超能文献

骨粘连蛋白(Aspr)是细胞外基质蛋白,是心脏重构的有益调节剂。

Asporin, an extracellular matrix protein, is a beneficial regulator of cardiac remodeling.

机构信息

Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA USA.

Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, 0310 Oslo, Norway; KG Jebsen Centre for B-Cell Malignancies, Institute for Clinical Medicine, University of Oslo, 0318 Oslo, Norway.

出版信息

Matrix Biol. 2022 Jun;110:40-59. doi: 10.1016/j.matbio.2022.04.005. Epub 2022 Apr 22.

Abstract

Heart failure is accompanied by adverse cardiac remodeling involving extracellular matrix (ECM). Cardiac ECM acts as a major reservoir for many proteins including growth factors, cytokines, collagens, and proteoglycans. Activated fibroblasts during cardiac injury can alter the composition and activity of these ECM proteins. Through unbiased analysis of a microarray dataset of human heart tissue comparing normal hearts (n = 135) to hearts with ischemic cardiomyopathy (n = 94), we identified Asporin (ASPN) as the top differentially regulated gene (DEG) in ischemic cardiomyopathy; its gene-ontology terms relate closely to fibrosis and cell death. ASPN is a Class I small leucine repeat protein member implicated in cancer, osteoarthritis, and periodontal ligament mineralization. However, its role in cardiac remodeling is still unknown. Here, we initially confirmed our big dataset analysis through cells, mice, and clinical atrial biopsy samples to demonstrate increased Aspn expression after pressure overload or cardiac ischemia/reperfusion injury. We tested the hypothesis that Aspn, being a TGFβ1 inhibitor, can attenuate fibrosis in mouse models of cardiac injury. We found that Aspn is released by cardiac fibroblasts and attenuates TGFβ signaling. Moreover, Aspn mice displayed increased fibrosis and decreased cardiac function after pressure overload by transverse aortic constriction (TAC) in mice. In addition, Aspn protected cardiomyocytes from hypoxia/reoxygenation-induced cell death and regulated mitochondrial bioenergetics in cardiomyocytes. Increased infarct size after ischemia/reperfusion injury in Aspn mice confirmed Aspn's contribution to cardiomyocyte viability. Echocardiography revealed greater reduction in left ventricular systolic function post-I/R in the Aspn animals compared to wild type. Furthermore, we developed an ASPN-mimic peptide using molecular modeling and docking which when administered to mice prevented TAC-induced fibrosis and preserved heart function. The peptide also reduced infarct size after I/R in mice, demonstrating the translational potential of ASPN-based therapy. Thus, we establish the role of ASPN as a critical ECM molecule that regulates cardiac remodeling to preserve heart function.

摘要

心力衰竭伴随着细胞外基质(ECM)的不良心脏重构。心脏 ECM 作为许多蛋白质的主要储存库,包括生长因子、细胞因子、胶原和蛋白聚糖。心脏损伤时激活的成纤维细胞可以改变这些 ECM 蛋白的组成和活性。通过对比较正常心脏(n=135)和缺血性心肌病心脏(n=94)的人类心脏组织微阵列数据集进行无偏分析,我们确定了天冬氨酸蛋白酶抑制剂(ASPN)是缺血性心肌病中差异调节基因(DEG)的首位;其基因本体论术语与纤维化和细胞死亡密切相关。ASPN 是一种 I 类小亮氨酸重复蛋白家族成员,与癌症、骨关节炎和牙周韧带矿化有关。然而,它在心脏重构中的作用尚不清楚。在这里,我们最初通过细胞、小鼠和临床心房活检样本验证了我们的大数据集分析,以证明压力超负荷或心脏缺血/再灌注损伤后 Aspn 表达增加。我们假设 Aspn 作为 TGFβ1 抑制剂可以减轻心脏损伤模型中的纤维化。我们发现 Aspn 由心脏成纤维细胞释放,并减弱 TGFβ 信号。此外,Aspn 小鼠在横主动脉缩窄(TAC)后压力超负荷时表现出纤维化增加和心脏功能下降。此外,Aspn 可保护心肌细胞免受缺氧/复氧诱导的细胞死亡,并调节心肌细胞中线粒体生物能。Aspn 小鼠缺血/再灌注损伤后的梗死面积增加证实了 Aspn 对心肌细胞活力的贡献。超声心动图显示 Aspn 动物在缺血/再灌注后左心室收缩功能的降低幅度大于野生型。此外,我们使用分子建模和对接开发了一种 ASPN 模拟肽,当将其施用于小鼠时,可预防 TAC 诱导的纤维化并维持心脏功能。该肽还可减少小鼠缺血/再灌注后的梗死面积,证明了基于 ASPN 的治疗的转化潜力。因此,我们确定了 ASPN 作为一种关键的细胞外基质分子的作用,该分子通过调节心脏重构来维持心脏功能。

相似文献

1
Asporin, an extracellular matrix protein, is a beneficial regulator of cardiac remodeling.
Matrix Biol. 2022 Jun;110:40-59. doi: 10.1016/j.matbio.2022.04.005. Epub 2022 Apr 22.
2
The Extracellular Matrix in Ischemic and Nonischemic Heart Failure.
Circ Res. 2019 Jun 21;125(1):117-146. doi: 10.1161/CIRCRESAHA.119.311148. Epub 2019 Jun 20.
4
CTRP15 derived from cardiac myocytes attenuates TGFβ1-induced fibrotic response in cardiac fibroblasts.
Cardiovasc Drugs Ther. 2020 Oct;34(5):591-604. doi: 10.1007/s10557-020-06970-6.
6
CITED4 Protects Against Adverse Remodeling in Response to Physiological and Pathological Stress.
Circ Res. 2020 Aug 14;127(5):631-646. doi: 10.1161/CIRCRESAHA.119.315881. Epub 2020 May 18.
7
A novel mtDNA repair fusion protein attenuates maladaptive remodeling and preserves cardiac function in heart failure.
Am J Physiol Heart Circ Physiol. 2018 Feb 1;314(2):H311-H321. doi: 10.1152/ajpheart.00515.2017. Epub 2017 Nov 3.
8
Connective tissue growth factor inhibition attenuates left ventricular remodeling and dysfunction in pressure overload-induced heart failure.
Hypertension. 2014 Jun;63(6):1235-40. doi: 10.1161/HYPERTENSIONAHA.114.03279. Epub 2014 Mar 31.
9
Asporin Promotes TGF-β-induced Lung Myofibroblast Differentiation by Facilitating Rab11-Dependent Recycling of TβRI.
Am J Respir Cell Mol Biol. 2022 Feb;66(2):158-170. doi: 10.1165/rcmb.2021-0257OC.
10
Extracellular matrix remodeling in animal models of anthracycline-induced cardiomyopathy: a meta-analysis.
J Mol Med (Berl). 2021 Sep;99(9):1195-1207. doi: 10.1007/s00109-021-02098-8. Epub 2021 May 29.

引用本文的文献

1
Genes driving three-dimensional growth of immortalized cells and cancer.
Cell Death Dis. 2025 Jun 10;16(1):442. doi: 10.1038/s41419-025-07719-5.
4
Global requirements for manufacturing and validation of clinical grade extracellular vesicles.
J Liq Biopsy. 2024 Nov 20;6:100278. doi: 10.1016/j.jlb.2024.100278. eCollection 2024 Dec.
5
Identification of fibrosis-associated biomarkers in heart failure and human cancers.
J Transl Med. 2024 Nov 19;22(1):1042. doi: 10.1186/s12967-024-05759-7.
6
Integrative Multiomics in the Lung Reveals a Protective Role of Asporin in Pulmonary Arterial Hypertension.
Circulation. 2024 Oct 15;150(16):1268-1287. doi: 10.1161/CIRCULATIONAHA.124.069864. Epub 2024 Aug 21.
7
Twisting the theory on the origin of human umbilical cord coiling featuring monozygotic twins.
Life Sci Alliance. 2024 Jun 3;7(8). doi: 10.26508/lsa.202302543. Print 2024 Aug.
9
TAK1 Activation by NLRP3 Deficiency Confers Cardioprotection Against Pressure Overload-Induced Cardiomyocyte Pyroptosis and Hypertrophy.
JACC Basic Transl Sci. 2023 Aug 9;8(12):1555-1573. doi: 10.1016/j.jacbts.2023.05.008. eCollection 2023 Dec.
10
Fibroblasts and immune cells: at the crossroad of organ inflammation and fibrosis.
Am J Physiol Heart Circ Physiol. 2024 Feb 1;326(2):H303-H316. doi: 10.1152/ajpheart.00545.2023. Epub 2023 Dec 1.

本文引用的文献

1
Editorial: Cardiac Hypertrophy: From Compensation to Decompensation and Pharmacological Interventions.
Front Pharmacol. 2021 Apr 26;12:665936. doi: 10.3389/fphar.2021.665936. eCollection 2021.
2
Complex Relationship Between Cardiac Fibroblasts and Cardiomyocytes in Health and Disease.
J Am Heart Assoc. 2021 Feb;10(5):e019338. doi: 10.1161/JAHA.120.019338. Epub 2021 Feb 15.
4
ShinyGO: a graphical gene-set enrichment tool for animals and plants.
Bioinformatics. 2020 Apr 15;36(8):2628-2629. doi: 10.1093/bioinformatics/btz931.
5
The Role of Mitochondria in the Mechanisms of Cardiac Ischemia-Reperfusion Injury.
Antioxidants (Basel). 2019 Oct 6;8(10):454. doi: 10.3390/antiox8100454.
6
Cell-specific ablation of Hsp47 defines the collagen-producing cells in the injured heart.
JCI Insight. 2019 Aug 8;4(15):e128722. doi: 10.1172/jci.insight.128722.
8
Fibroblasts in the Infarcted, Remodeling, and Failing Heart.
JACC Basic Transl Sci. 2019 Jun 24;4(3):449-467. doi: 10.1016/j.jacbts.2019.02.006. eCollection 2019 Jun.
9
Asporin Restricts Mesenchymal Stromal Cell Differentiation, Alters the Tumor Microenvironment, and Drives Metastatic Progression.
Cancer Res. 2019 Jul 15;79(14):3636-3650. doi: 10.1158/0008-5472.CAN-18-2931. Epub 2019 May 23.
10
Mitochondrial dysfunction in pathophysiology of heart failure.
J Clin Invest. 2018 Aug 31;128(9):3716-3726. doi: 10.1172/JCI120849. Epub 2018 Aug 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验