Suppr超能文献

用于增强CO还原的原子分散双金属位点催化剂:活性位点结构的机理洞察

Atomically Dispersed Dual-Metal Site Catalysts for Enhanced CO Reduction: Mechanistic Insight into Active Site Structures.

作者信息

Li Yi, Shan Weitao, Zachman Michael J, Wang Maoyu, Hwang Sooyeon, Tabassum Hassina, Yang Juan, Yang Xiaoxuan, Karakalos Stavros, Feng Zhenxing, Wang Guofeng, Wu Gang

机构信息

School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.

Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.

出版信息

Angew Chem Int Ed Engl. 2022 Jul 11;61(28):e202205632. doi: 10.1002/anie.202205632. Epub 2022 May 9.

Abstract

Carbon-supported nitrogen-coordinated single-metal site catalysts (i.e., M-N-C, M: Fe, Co, or Ni) are active for the electrochemical CO reduction reaction (CO RR) to CO. Further improving their intrinsic activity and selectivity by tuning their N-M bond structures and coordination is limited. Herein, we expand the coordination environments of M-N-C catalysts by designing dual-metal active sites. The Ni-Fe catalyst exhibited the most efficient CO2RR activity and promising stability compared to other combinations. Advanced structural characterization and theoretical prediction suggest that the most active N-coordinated dual-metal site configurations are 2N-bridged (Fe-Ni)N , in which FeN and NiN moieties are shared with two N atoms. Two metals (i.e., Fe and Ni) in the dual-metal site likely generate a synergy to enable more optimal *COOH adsorption and *CO desorption than single-metal sites (FeN or NiN ) with improved intrinsic catalytic activity and selectivity.

摘要

碳负载氮配位单金属位点催化剂(即M-N-C,M:Fe、Co或Ni)对电化学CO还原反应(CO RR)生成CO具有活性。通过调整其N-M键结构和配位来进一步提高其本征活性和选择性是有限的。在此,我们通过设计双金属活性位点来扩展M-N-C催化剂的配位环境。与其他组合相比,Ni-Fe催化剂表现出最有效的CO2RR活性和良好的稳定性。先进的结构表征和理论预测表明,最具活性的N配位双金属位点构型是2N桥连的(Fe-Ni)N,其中FeN和NiN部分与两个N原子共享。双金属位点中的两种金属(即Fe和Ni)可能产生协同作用,与单金属位点(FeN或NiN)相比,能够实现更优化的COOH吸附和CO脱附,同时提高本征催化活性和选择性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验