From the Division of Pulmonary, Critical Care, and Sleep Medicine, Rush University Medical Center, Chicago, Ill (A.P.T.); Division of Pulmonary and Critical Care Medicine, University of Kansas School of Medicine, Kansas City, KS 66103-2937 (C.H., M.C.); Division of Biostatistics (C.W.G., D.L., K.B.S.), Division of Pulmonary and Critical Care Medicine (J.G.K., M.C.M., M.S.), Washington University School of Medicine, St Louis, Mo; Department of Radiology, University of Iowa, Iowa City, Iowa (J.P.S., J.M.R., J.D.N., E.A.H.); Department of Medicine, University of Arizona, Tucson, Ariz (H.L., E.R.B., D.A.M.); VIDA Diagnostics, Coralville, Iowa (J.S., S.M., S.P.); Section of Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University School of Medicine, Winston-Salem, NC (W.C.M.); Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Mass (E.I., G.R.W., B.D.L.); Department of Radiology (J.K.L.) and Division of Pulmonary, Allergy and Critical Care Medicine (S.E.W.), University of Pittsburgh, Pittsburgh, Pa; Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, Calif (J.V.F.); Department of Radiology (M.L.S., S.B.F.) and Division of Allergy, Pulmonary and Critical Care Medicine (N.N.J.), University of Wisconsin, Madison, Wis; Department of Public Health Sciences, Penn State Eberly College of Science, University Park, Pa (D.T.M.); and Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Tex (A.S.).
Radiology. 2022 Aug;304(2):450-459. doi: 10.1148/radiol.210363. Epub 2022 Apr 26.
Background Clustering key clinical characteristics of participants in the Severe Asthma Research Program (SARP), a large, multicenter prospective observational study of patients with asthma and healthy controls, has led to the identification of novel asthma phenotypes. Purpose To determine whether quantitative CT (qCT) could help distinguish between clinical asthma phenotypes. Materials and Methods A retrospective cross-sectional analysis was conducted with the use of qCT images (maximal bronchodilation at total lung capacity [TLC], or inspiration, and functional residual capacity [FRC], or expiration) from the cluster phenotypes of SARP participants (cluster 1: minimal disease; cluster 2: mild, reversible; cluster 3: obese asthma; cluster 4: severe, reversible; cluster 5: severe, irreversible) enrolled between September 2001 and December 2015. Airway morphometry was performed along standard paths (RB1, RB4, RB10, LB1, and LB10). Corresponding voxels from TLC and FRC images were mapped with use of deformable image registration to characterize disease probability maps (DPMs) of functional small airway disease (fSAD), voxel-level volume changes (Jacobian), and isotropy (anisotropic deformation index [ADI]). The association between cluster assignment and qCT measures was evaluated using linear mixed models. Results A total of 455 participants were evaluated with cluster assignments and CT (mean age ± SD, 42.1 years ± 14.7; 270 women). Airway morphometry had limited ability to help discern between clusters. DPM fSAD was highest in cluster 5 (cluster 1 in SARP III: 19.0% ± 20.6; cluster 2: 18.9% ± 13.3; cluster 3: 24.9% ± 13.1; cluster 4: 24.1% ± 8.4; cluster 5: 38.8% ± 14.4; < .001). Lower whole-lung Jacobian and ADI values were associated with greater cluster severity. Compared to cluster 1, cluster 5 lung expansion was 31% smaller (Jacobian in SARP III cohort: 2.31 ± 0.6 vs 1.61 ± 0.3, respectively, < .001) and 34% more isotropic (ADI in SARP III cohort: 0.40 ± 0.1 vs 0.61 ± 0.2, < .001). Within-lung Jacobian and ADI SDs decreased as severity worsened (Jacobian SD in SARP III cohort: 0.90 ± 0.4 for cluster 1; 0.79 ± 0.3 for cluster 2; 0.62 ± 0.2 for cluster 3; 0.63 ± 0.2 for cluster 4; and 0.41 ± 0.2 for cluster 5; < .001). Conclusion Quantitative CT assessments of the degree and intraindividual regional variability of lung expansion distinguished between well-established clinical phenotypes among participants with asthma from the Severe Asthma Research Program study. © RSNA, 2022 See also the editorial by Verschakelen in this issue.
对严重哮喘研究计划(SARP)参与者的关键临床特征进行聚类分析,该研究是一项针对哮喘患者和健康对照者的大型多中心前瞻性观察研究,已经确定了新的哮喘表型。目的:确定定量 CT(qCT)是否有助于区分临床哮喘表型。材料与方法:对 SARP 参与者(聚类 1:轻度疾病;聚类 2:轻度、可逆;聚类 3:肥胖哮喘;聚类 4:重度、可逆;聚类 5:重度、不可逆)的聚类表型进行回顾性横断面分析,这些参与者于 2001 年 9 月至 2015 年 12 月期间入组。在总肺容量(TLC,吸气)和功能残气容量(FRC,呼气)时进行气道形态计量学检查。使用变形图像配准将 TLC 和 FRC 图像中的相应体素映射,以表征功能小气道疾病(fSAD)的疾病概率图(DPM)、体素水平的体积变化(雅可比)和各向同性(各向异性变形指数 [ADI])。使用线性混合模型评估聚类分配与 qCT 测量之间的关系。结果:对 455 名参与者进行聚类分配和 CT 评估(平均年龄 ± 标准差,42.1 岁±14.7;270 名女性)。气道形态计量学在区分聚类方面的能力有限。DPM fSAD 在聚类 5 中最高(SARP III 中的聚类 1:19.0%±20.6;聚类 2:18.9%±13.3;聚类 3:24.9%±13.1;聚类 4:24.1%±8.4;聚类 5:38.8%±14.4;<0.001)。全肺雅各布值和 ADI 值越低,与聚类严重程度越高相关。与聚类 1 相比,聚类 5 的肺扩张小 31%(SARP III 队列中的雅各布值:2.31±0.6 与 1.61±0.3,<0.001),各向异性增加 34%(SARP III 队列中的 ADI:0.40±0.1 与 0.61±0.2,<0.001)。随着严重程度的增加,肺内雅各布值和 ADI 的标准差降低(SARP III 队列中的雅各布值标准差:聚类 1 为 0.90±0.4;聚类 2 为 0.79±0.3;聚类 3 为 0.62±0.2;聚类 4 为 0.63±0.2;聚类 5 为 0.41±0.2;<0.001)。结论:通过对严重哮喘研究计划研究中参与者的肺扩张程度和个体内区域变异性的定量 CT 评估,可区分出已确立的哮喘临床表型。