Department of Radiology, Huadong Hospital Affiliated to Fudan University, 221, Yanan West Road, Jingan Temple Street, Jingan District, Shanghai, China.
Zhang Guozhen Small Pulmonary Nodules Diagnosis and Treatment Center, Shanghai, China.
Respir Res. 2023 Nov 28;24(1):299. doi: 10.1186/s12931-023-02611-2.
Parametric response mapping (PRM) enables the evaluation of small airway disease (SAD) at the voxel level, but requires both inspiratory and expiratory chest CT scans. We hypothesize that deep learning PRM from inspiratory chest CT scans can effectively evaluate SAD in individuals with normal spirometry.
We included 537 participants with normal spirometry, a history of smoking or secondhand smoke exposure, and divided them into training, tuning, and test sets. A cascaded generative adversarial network generated expiratory CT from inspiratory CT, followed by a UNet-like network predicting PRM using real inspiratory CT and generated expiratory CT. The performance of the prediction is evaluated using SSIM, RMSE and dice coefficients. Pearson correlation evaluated the correlation between predicted and ground truth PRM. ROC curves evaluated predicted PRM (the volume percentage of functional small airway disease, fSAD) performance in stratifying SAD.
Our method can generate expiratory CT of good quality (SSIM 0.86, RMSE 80.13 HU). The predicted PRM dice coefficients for normal lung, emphysema, and fSAD regions are 0.85, 0.63, and 0.51, respectively. The volume percentages of emphysema and fSAD showed good correlation between predicted and ground truth PRM (|r| were 0.97 and 0.64, respectively, p < 0.05). Predicted PRM showed good SAD stratification performance with ground truth PRM at thresholds of 15%, 20% and 25% (AUCs were 0.84, 0.78, and 0.84, respectively, p < 0.001).
Our deep learning method generates high-quality PRM using inspiratory chest CT and effectively stratifies SAD in individuals with normal spirometry.
参数响应映射(PRM)能够在体素水平上评估小气道疾病(SAD),但需要吸气和呼气胸部 CT 扫描。我们假设,从吸气胸部 CT 扫描中提取的深度学习 PRM 可以有效地评估肺功能正常个体的 SAD。
我们纳入了 537 名肺功能正常、有吸烟或二手烟暴露史的参与者,并将其分为训练集、调优集和测试集。级联生成对抗网络从吸气 CT 生成呼气 CT,然后使用真实吸气 CT 和生成的呼气 CT 通过 UNet 类似的网络预测 PRM。使用 SSIM、RMSE 和 Dice 系数评估预测的性能。Pearson 相关评估预测 PRM 与真实 PRM 之间的相关性。ROC 曲线评估预测 PRM(功能小气道疾病的体积百分比,fSAD)在 SAD 分层中的性能。
我们的方法可以生成质量较好的呼气 CT(SSIM 为 0.86,RMSE 为 80.13 HU)。正常肺、肺气肿和 fSAD 区域的预测 PRM Dice 系数分别为 0.85、0.63 和 0.51。肺气肿和 fSAD 的体积百分比在预测和真实 PRM 之间具有良好的相关性(|r|分别为 0.97 和 0.64,p<0.05)。在阈值为 15%、20%和 25%时,预测 PRM 与真实 PRM 具有良好的 SAD 分层性能(AUC 分别为 0.84、0.78 和 0.84,p<0.001)。
我们的深度学习方法使用吸气胸部 CT 生成高质量的 PRM,并有效地对肺功能正常的个体进行 SAD 分层。