Hu Wenqi, Kher-Elden Mohammad A, Zhang Hexu, Cheng Peng, Chen Lan, Piquero-Zulaica Ignacio, Abd El-Fattah Zakaria M, Barth Johannes V, Wu Kehui, Zhang Yi-Qi
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
Nanoscale. 2022 May 16;14(18):7039-7048. doi: 10.1039/d2nr00536k.
Tailoring Shockley surface-state (SS) electrons utilizing complex interfacial supramolecular tessellations was explored by low-temperature scanning tunnelling microscopy and spectroscopy, combined with computational modelling using electron plane wave expansion (EPWE) and empirical tight-binding (TB) methods. Employing a recently introduced gas-mediated on-surface reaction protocol, three distinct types of open porous networks comprising paired organometallic species as basic tectons were selectively synthesized. In particular, these supramolecular networks feature semiregular Archimedean tilings, providing intricate quantum dots (QDs) coupling scenarios compared to hexagonal porous superlattices. Our experimental results in conjunction with modelling calculations demonstrate the possibility of realizing novel two-dimensional electronic structures such as Kagome- and Dirac-type as well as hybrid Kagome-type bands QD coupling. Compared to constructing SS electron pathways molecular manipulations, our studies reveal significant potential of exploiting QD coupling as a complementary and versatile route for the control of surface electronic landscapes.
利用低温扫描隧道显微镜和光谱学,并结合使用电子平面波展开(EPWE)和经验紧束缚(TB)方法的计算建模,探索了利用复杂的界面超分子镶嵌来定制肖克利表面态(SS)电子。采用最近引入的气体介导的表面反应方案,选择性地合成了三种不同类型的开放多孔网络,这些网络包含成对的有机金属物种作为基本构造单元。特别是,这些超分子网络具有半规则的阿基米德镶嵌,与六边形多孔超晶格相比,提供了复杂的量子点(QD)耦合场景。我们的实验结果与建模计算相结合,证明了实现新型二维电子结构的可能性,如 Kagome 型和狄拉克型以及混合 Kagome 型能带量子点耦合。与通过分子操纵构建 SS 电子路径相比,我们的研究揭示了利用量子点耦合作为控制表面电子景观的补充和通用途径的巨大潜力。