National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
J Phys Condens Matter. 2023 Jul 7;35(40). doi: 10.1088/1361-648X/ace2a2.
V6Sn6(= Y and lanthanides) with two-dimensional vanadium-kagome surface states is an ideal platform to investigate kagome physics and manipulate the kagome features to realize novel phenomena. Utilizing the micron-scale spatially resolved angle-resolved photoemission spectroscopy and first-principles calculations, we report a systematical study of the electronic structures ofV6Sn6(= Gd, Tb, and Lu) on the two cleaved surfaces, i.e. the V- andSn-terminated (001) surfaces. The calculated bands without any renormalization match well with the main ARPES dispersive features, indicating the weak electronic correlation in this system. We observe ''-like kagome surface states around the Brillouin zone corners showing-element-dependent intensities, which is probably due to various coupling strengths between V andSnlayers. Our finding suggests an avenue for tuning electronic states by interlayer coupling based on two-dimensional kagome lattices.
V6Sn6(= Y 和镧系元素) 具有二维钒 kagome 表面态,是研究 kagome 物理和操纵 kagome 特征以实现新现象的理想平台。利用微米级空间分辨角分辨光发射光谱和第一性原理计算,我们对 V6Sn6(= Gd、Tb 和 Lu) 在两个劈开表面,即 V- 和 Sn- 终止 (001) 表面上的电子结构进行了系统研究。未经任何重整化的计算能带与主要 ARPES 色散特征非常吻合,表明该系统中的电子关联较弱。我们观察到在布里渊区角周围出现“-like” kagome 表面态,其强度随元素而异,这可能是由于 V 和 Sn 层之间的耦合强度不同。我们的发现为通过二维 kagome 晶格的层间耦合来调谐电子态提供了一种途径。