Suppr超能文献

利用数据挖掘算法,从断奶时的形态测量值预测本土 Honamli 幼崽的繁殖年龄时的体重。

Prediction of the live weight at breeding age from morphological measurements taken at weaning in indigenous Honamli kids using data mining algorithms.

机构信息

Faculty of Agriculture, Department of Animal Science, Biometry and Genetics Unit, Eskisehir Osmangazi University, Eskisehir, Turkey.

出版信息

Trop Anim Health Prod. 2022 Apr 26;54(3):172. doi: 10.1007/s11250-022-03174-y.

Abstract

The purpose of this study was to predict live weight at breeding age (LW) based on weaning morphological traits, which birth weight (BW), weaning weight (WW), withers height (WH), back height (BH), rump height (RH), chest depth (CD), body length (BL), tail length (TL), chest girth (CG), leg girth (LG), front shark circumference (FSC), head length (HL), head width (HW), nose length (NL), ear length (EL), and ear width (EW). For this purpose, measurements were taken from 84 Honamli kids born in 2018. The study also included sex, birth type (BT), and ear type as the nominal predictors. For this purpose, two MARS (Multivariate Adaptive Regression Splines), which are interaction (MARS2) and non-interaction (MARS1), and based-tree algorithms, such as CART (Classification and Regression Tree), CHAID (Chi-Square Automatic Interaction Detector), and Exhaustive CHAID, were used by cross-validation 5 and compared with each other considering the predictive performance by taking into account nine predictive performances criteria. LW has a significantly positive and high linear relationship with WH (0.770), BH (0.770), RH (0.750), BL (0.750), and CG (0.770), respectively (p < 0.01). According to these criteria, second-order interaction MARS2 model had the best performance among all data mining algorithms. Also, the CHAID algorithm was the best predictor of LW among regression tree-based algorithms. The CHAID algorithm predicted that the Honamli goat with 14.426 < WW < 15.575 kg and HW > 16.464 cm had the heaviest LW at 56.268 kg. The MARS2 model showed that the heaviest LW could be produced by WW > 16.10 kg, HW > 17 cm, Sex-Male × BL > 60 cm, WW × BL < 50 cm, BT-twin × WW < 15.60 kg, BL > 50 cm × CG > 62.4 cm and male goats. Also, CHAID and MARS2 algorithms explain 92.00% and 94.50% of the variation in LW, respectively. According to the results, it can be concluded that the CHAID and MARS algorithms used in the prediction of LW at breeding age could give an idea to reveal the breed standards examined for breeding purposes. While determining that there are important statistical methods in defining body characteristics at weaning in a complex way, the body characteristics determined by these models can be used as indirect selection criteria.

摘要

本研究旨在通过断奶形态特征预测繁殖年龄时的活体体重(LW),这些特征包括出生体重(BW)、断奶体重(WW)、肩高(WH)、背高(BH)、臀高(RH)、胸深(CD)、体长(BL)、尾长(TL)、胸围(CG)、腿围(LG)、前肢鲨鱼围(FSC)、头长(HL)、头宽(HW)、鼻长(NL)、耳长(EL)和耳宽(EW)。为此,对 2018 年出生的 84 只河南黑山羊羔羊进行了测量。研究还包括性别、出生类型(BT)和耳型作为名义预测因子。为此,使用了两种多变量自适应回归样条(MARS),即交互(MARS2)和非交互(MARS1),以及分类和回归树(CART)、Chi-Square 自动交互检测(CHAID)和穷尽 CHAID 等基于树的算法,通过交叉验证 5 并考虑到九个预测性能标准,将它们相互比较,以考虑预测性能。LW 与 WH(0.770)、BH(0.770)、RH(0.750)、BL(0.750)和 CG(0.770)呈显著正相关和高度线性关系(p<0.01)。根据这些标准,二阶交互 MARS2 模型在所有数据挖掘算法中表现最佳。此外,基于回归树的算法中,CHAID 算法是 LW 的最佳预测器。CHAID 算法预测体重最重的河南黑山羊为 WW 为 14.426kg<WW<15.575kg 和 HW>16.464cm,体重为 56.268kg。MARS2 模型表明,通过 WW>16.10kg、HW>17cm、Sex-Male×BL>60cm、WW×BL<50cm、BT-twin×WW<15.60kg、BL>50cm×CG>62.4cm 和公山羊可以生产最重的 LW。此外,CHAID 和 MARS2 算法分别解释了 LW 变异的 92.00%和 94.50%。根据结果可以得出结论,用于预测繁殖年龄时 LW 的 CHAID 和 MARS 算法可以提供一种揭示用于繁殖目的的品种标准的思路。在确定以复杂的方式定义断奶时身体特征的重要统计方法的同时,这些模型确定的身体特征可以用作间接选择标准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验