Suppr超能文献

使用不同数据挖掘算法预测塔里羊体重的比较研究。

Body weight prediction using different data mining algorithms in Thalli sheep: A comparative study.

作者信息

Abbas Ansar, Ullah Muhammad Aman, Waheed Abdul

机构信息

Department of Statistics, Government Degree College for Boys, Makhdoom Rasheed, Multan, Pakistan.

Department of Statistics, Bahauddin Zakariya University, Multan, Pakistan.

出版信息

Vet World. 2021 Sep;14(9):2332-2338. doi: 10.14202/vetworld.2021.2332-2338. Epub 2021 Sep 6.

Abstract

BACKGROUND AND AIM

The Thalli sheep are the main breed of sheep in Pakistan, and an effective method to predict their body weight (BW) using linear body measurements has not yet been determined. Therefore, this study aims to establish an algorithm with the best predictive capability, among the Chi-square automatic interaction detector (CHAID), exhaustive CHAID, artificial neural network, and classification and regression tree (CART) algorithms, in live BW prediction using selected body measurements in female Pakistani Thalli sheep.

MATERIALS AND METHODS

A total of 152 BW records, including nine continuous predictors (wither height, body length [BL], head length, rump length, tail length, head width, rump width, heart girth [HG], and barrel depth), were utilized. The coefficient of determination (R), standard deviation ratio, root-mean-square error (RMSE), etc., were calculated for each algorithm.

RESULTS

The R (%) values ranged from 49.28 (CART) to 64.48 (CHAID). The lowest RMSE was found for CHAID (2.61), and the highest one for CART (3.12). The most significant predictors were the HG of live BW for all algorithms. The heaviest average BW (41.12 kg) was observed in the subgroup of those having a BL of >73.91 cm (Adjusted p=0.045).

CONCLUSION

Among the algorithms, CHAID provided the most appropriate predictive capability in the prediction of live BW for female Thalli sheep. In general, the applied algorithms accurately predicted the BW of Thalli sheep, which can be very helpful in deciding on the standards, available drug doses, and required feed amount for animals.

摘要

背景与目的

塔里羊是巴基斯坦的主要绵羊品种,尚未确定一种利用线性体尺测量来预测其体重(BW)的有效方法。因此,本研究旨在在卡方自动交互检测法(CHAID)、穷举CHAID、人工神经网络和分类回归树(CART)算法中,建立一种在利用巴基斯坦雌性塔里羊选定体尺测量预测活体体重方面具有最佳预测能力的算法。

材料与方法

共利用了152条体重记录,包括9个连续预测变量(鬐甲高度、体长[BL]、头长、臀长、尾长、头宽、臀宽、胸围[HG]和体深)。计算了每种算法的决定系数(R)、标准差比、均方根误差(RMSE)等。

结果

R(%)值范围为49.28(CART)至64.48(CHAID)。CHAID的RMSE最低(2.61),CART的RMSE最高(3.12)。所有算法中,活体体重的最显著预测变量是胸围。在体长>73.91 cm的亚组中观察到最重的平均体重(41.12 kg)(校正p = 0.045)。

结论

在这些算法中,CHAID在预测雌性塔里羊活体体重方面提供了最合适的预测能力。总体而言,所应用的算法准确地预测了塔里羊的体重,这在确定动物的标准、可用药物剂量和所需饲料量方面非常有帮助。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验