Sun Zemin, Lin Liu, He Jinlu, Ding Dajie, Wang Tongyue, Li Jie, Li Mingxuan, Liu Yicheng, Li Yayin, Yuan Mengwei, Huang Binbin, Li Huifeng, Sun Genban
Center for Advanced Materials Research, Beijing Normal University, Zhuhai 519087, China.
Beijing Key Laboratory of Energy Conversion and Storage Materials Institution, College of Chemistry, Beijing Normal University, Beijing 100875, China.
J Am Chem Soc. 2022 May 11;144(18):8204-8213. doi: 10.1021/jacs.2c01153. Epub 2022 Apr 26.
Aqueous-phase oxygen evolution reaction (OER) is the bottleneck of water splitting. The formation of the O-O bond involves the generation of paramagnetic oxygen molecules from the diamagnetic hydroxides. The spin configurations might play an important role in aqueous-phase molecular electrocatalysis. However, spintronic electrocatalysis is almost an uncultivated land for the exploration of the oxygen molecular catalysis process. Herein, we present a novel magnetic Fe site spin-splitting strategy, wherein the electronic structure and spin states of the Fe sites are effectively induced and optimized by the Jahn-Teller effect of Cu. The theoretical calculations and operando attenuated total reflectance-infrared Fourier transform infrared (ATR FT-IR) reveal the facilitation for the O-O bond formation, which accelerates the production of O from OH and improves the OER activity. The Cu-NiFe-LDH catalyst exhibits a low overpotential of 210 mV at 10 mA cm and a low Tafel slope (33.7 mV dec), better than those of the initial Cu-NiFe-LDHs (278 mV, 101.6 mV dec). With the Cu regulation, we have realized the transformation of NiFe-LDHs from ferrimagnets to ferromagnets and showcase that the OER performance of Cu-NiFe-LDHs significantly increases compared with that of NiFe-LDHs under the effect of a magnetic field for the first time. The magnetic-field-assisted Cu-NiFe-LDHs provide an ultralow overpotential of 180 mV at 10 mA cm, which is currently one of the best OER performances. The combination of the magnetic field and spin configuration provides new principles for the development of high-performance catalysts and understandings of the catalytic mechanism from the spintronic level.
水相析氧反应(OER)是水分解的瓶颈。O-O键的形成涉及从抗磁性氢氧化物生成顺磁性氧分子。自旋构型可能在水相分子电催化中起重要作用。然而,自旋电子学电催化几乎是氧分子催化过程探索的未开垦之地。在此,我们提出了一种新颖的磁性铁位点自旋分裂策略,其中铁位点的电子结构和自旋态通过铜的 Jahn-Teller 效应得到有效诱导和优化。理论计算和原位衰减全反射红外傅里叶变换红外光谱(ATR FT-IR)揭示了对O-O键形成的促进作用,加速了从OH生成O的过程并提高了OER活性。Cu-NiFe-LDH催化剂在10 mA cm时具有210 mV的低过电位和低塔菲尔斜率(33.7 mV dec),优于初始的Cu-NiFe-LDHs(278 mV,101.6 mV dec)。通过铜调控,我们首次实现了NiFe-LDHs从亚铁磁体到铁磁体的转变,并展示了在磁场作用下,Cu-NiFe-LDHs的OER性能与NiFe-LDHs相比显著提高。磁场辅助的Cu-NiFe-LDHs在10 mA cm时提供180 mV的超低过电位,这是目前最佳的OER性能之一。磁场和自旋构型的结合为高性能催化剂的开发提供了新原理,并从自旋电子学层面加深了对催化机理的理解。