Suppr超能文献

借用历史信息进行新冠病毒疫苗的非劣效性试验。

Borrowing historical information for non-inferiority trials on Covid-19 vaccines.

机构信息

Dipartimento di Scienze Statistiche, Sapienza University of Rome, Roma, Italy.

出版信息

Int J Biostat. 2022 Apr 27;19(1):177-189. doi: 10.1515/ijb-2021-0120. eCollection 2023 May 1.

Abstract

Non-inferiority vaccine trials compare new candidates to active controls that provide clinically significant protection against a disease. Bayesian statistics allows to exploit pre-experimental information available from previous studies to increase precision and reduce costs. Here, historical knowledge is incorporated into the analysis through a power prior that dynamically regulates the degree of information-borrowing. We examine non-inferiority tests based on credible intervals for the unknown effects-difference between two vaccines on the log odds ratio scale, with an application to new Covid-19 vaccines. We explore the frequentist properties of the method and we address the sample size determination problem.

摘要

非劣效性疫苗试验将新候选疫苗与能对疾病提供临床显著保护的活性对照进行比较。贝叶斯统计学允许利用来自先前研究的实验前信息来提高精度和降低成本。在这里,历史知识通过一个动力先验被纳入分析,该先验动态调节信息借用的程度。我们检验了基于两个疫苗在对数几率比尺度上的未知效应差异的可信区间的非劣效性检验,应用于新的 COVID-19 疫苗。我们探讨了该方法的频率性质,并解决了样本量确定问题。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验