Dipartimento di Scienze Statistiche, Sapienza University of Rome, Rome, Italy.
Pharm Stat. 2024 Mar-Apr;23(2):242-256. doi: 10.1002/pst.2349. Epub 2023 Nov 14.
Non-inferiority trials compare new experimental therapies to standard ones (active control). In these experiments, historical information on the control treatment is often available. This makes Bayesian methodology appealing since it allows a natural way to exploit information from past studies. In the present paper, we suggest the use of previous data for constructing the prior distribution of the control effect parameter. Specifically, we consider a dynamic power prior that possibly allows to discount the level of borrowing in the presence of heterogeneity between past and current control data. The discount parameter of the prior is based on the Hellinger distance between the posterior distributions of the control parameter based, respectively, on historical and current data. We develop the methodology for comparing normal means and we handle the unknown variance assumption using MCMC. We also provide a simulation study to analyze the proposed test in terms of frequentist size and power, as it is usually requested by regulatory agencies. Finally, we investigate comparisons with some existing methods and we illustrate an application to a real case study.
非劣效性试验将新的实验疗法与标准疗法(活性对照)进行比较。在这些实验中,通常可以获得对照治疗的历史信息。这使得贝叶斯方法很有吸引力,因为它允许以自然的方式利用过去研究的信息。在本文中,我们建议使用以前的数据来构建控制效果参数的先验分布。具体来说,我们考虑了一种动态功效先验,它可能允许在过去和当前控制数据之间存在异质性的情况下减少借用的程度。先验的折扣参数基于基于历史数据和当前数据的控制参数后验分布之间的 Hellinger 距离。我们开发了用于比较正态均值的方法,并使用 MCMC 处理未知方差假设。我们还提供了一项模拟研究,以根据监管机构通常要求的频率主义大小和功效来分析拟议的检验。最后,我们研究了与一些现有方法的比较,并举例说明了对实际案例研究的应用。