Suppr超能文献

在干性 AMD 小鼠模型中,RPE 中 LCN2(脂联素 2)的增加会减少自噬并激活炎症小体-铁死亡过程。

Increased LCN2 (lipocalin 2) in the RPE decreases autophagy and activates inflammasome-ferroptosis processes in a mouse model of dry AMD.

机构信息

Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

Department of Cell Biology and Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

出版信息

Autophagy. 2023 Jan;19(1):92-111. doi: 10.1080/15548627.2022.2062887. Epub 2022 Apr 26.

Abstract

In dry age-related macular degeneration (AMD), LCN2 (lipocalin 2) is upregulated. Whereas LCN2 has been implicated in AMD pathogenesis, the mechanism remains unknown. Here, we report that in retinal pigmented epithelial (RPE) cells, LCN2 regulates macroautophagy/autophagy, in addition to maintaining iron homeostasis. LCN2 binds to ATG4B to form an LCN2-ATG4B-LC3-II complex, thereby regulating ATG4B activity and LC3-II lipidation. Thus, increased LCN2 reduced autophagy flux. Moreover, RPE cells from KO, as well as KO and mutant mice (models with abnormal iron chelation), showed decreased autophagy flux and increased LCN2, indicative of CGAS- and STING1-mediated inflammasome activation. Live cell imaging of RPE cells with elevated LCN2 also showed a correlation between inflammasome activation and increased fluorescence intensity of the Liperfluo dye, indicative of oxidative stress-induced ferroptosis. Interestingly, both in human AMD patients and in mouse models with a dry AMD-like phenotype ( cKO and KO), the LCN2 homodimer variant is increased significantly compared to the monomer. Sub-retinal injection of the LCN2 homodimer secreted by RPE cells into NOD-SCID mice leads to retinal degeneration. In addition, we generated an LCN2 monoclonal antibody that neutralizes both the monomer and homodimer variants and rescued autophagy and ferroptosis activities in cKO mice. Furthermore, the antibody rescued retinal function in cKO mice as assessed by electroretinography. Here, we identify a molecular pathway whereby increased LCN2 elicits pathophysiology in the RPE, cells known to drive dry AMD pathology, thus providing a possible therapeutic strategy for a disease with no current treatment options. ACTB: actin, beta; Ad-GFP: adenovirus-green fluorescent protein; Ad-LCN2: adenovirus-lipocalin 2; Ad-LCN2-GFP: adenovirus-LCN2-green fluorescent protein; LCN2AKT2: AKT serine/threonine kinase 2; AMBRA1: autophagy and beclin 1 regulator 1; AMD: age-related macular degeneration; ARPE19: adult retinal pigment epithelial cell line-19; Asp278: aspartate 278; ATG4B: autophagy related 4B cysteine peptidase; ATG4C: autophagy related 4C cysteine peptidase; ATG7: autophagy related 7; ATG9B: autophagy related 9B; BLOC-1: biogenesis of lysosomal organelles complex 1; BLOC1S1: biogenesis of lysosomal organelles complex 1 subunit 1; C57BL/6J: C57 black 6J; CGAS: cyclic GMP-AMP synthase; ChQ: chloroquine; cKO: conditional knockout; Cys74: cysteine 74; Dab2: DAB adaptor protein 2; Def: deferoxamine; DHE: dihydroethidium; DMSO: dimethyl sulfoxide; ERG: electroretinography; FAC: ferric ammonium citrate; Fe: ferrous; FTH1: ferritin heavy chain 1; GPX: glutathione peroxidase; GST: glutathione S-transferase; HO: hydrogen peroxide; His280: histidine 280; IFNL/IFNλ: interferon lambda; IL1B/IL-1β: interleukin 1 beta; IS: Inner segment; ITGB1/integrin β1: integrin subunit beta 1; KO: knockout; LC3-GST: microtubule associated protein 1 light chain 3-GST; C-terminal fusion; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; LCN2: lipocalin 2; mAb: monoclonal antibody; MDA: malondialdehyde; MMP9: matrix metallopeptidase 9; NLRP3: NLR family pyrin domain containing 3; NOD-SCID: nonobese diabetic-severe combined immunodeficiency; OS: outer segment; PBS: phosphate-buffered saline; PMEL/PMEL17: premelanosome protein; RFP: red fluorescent protein; rLCN2: recombinant LCN2; ROS: reactive oxygen species; RPE SM: retinal pigmented epithelium spent medium; RPE: retinal pigment epithelium; RSL3: RAS-selective lethal; scRNAseq: single-cell ribonucleic acid sequencing; SD-OCT: spectral domain optical coherence tomography; shRNA: small hairpin ribonucleic acid; SM: spent medium; SOD1: superoxide dismutase 1; SQSTM1/p62: sequestosome 1; STAT1: signal transducer and activator of transcription 1; STING1: stimulator of interferon response cGAMP interactor 1; TYR: tyrosinase; VCL: vinculin; WT: wild type.

摘要

在干性年龄相关性黄斑变性(AMD)中,LCN2(脂联素 2)上调。虽然 LCN2 已被牵连到 AMD 发病机制中,但具体机制仍不清楚。在这里,我们报告在视网膜色素上皮(RPE)细胞中,LCN2 除了维持铁稳态外,还调节巨自噬/自噬。LCN2 与 ATG4B 结合形成 LCN2-ATG4B-LC3-II 复合物,从而调节 ATG4B 活性和 LC3-II 脂质化。因此,增加的 LCN2 降低了自噬通量。此外,来自 KO 以及 KO 和 突变小鼠(铁螯合异常模型)的 RPE 细胞显示自噬通量降低和 LCN2 增加,表明 CGAS 和 STING1 介导的炎症小体激活。对 LCN2 水平升高的 RPE 细胞进行活细胞成像也显示炎症小体激活与 Liperfluo 染料荧光强度的增加之间存在相关性,表明氧化应激诱导的铁死亡。有趣的是,在人类 AMD 患者和具有干性 AMD 样表型的小鼠模型( cKO 和 KO)中,LCN2 同源二聚体变体与单体相比显著增加。将 RPE 细胞分泌的 LCN2 同源二聚体注入 NOD-SCID 小鼠的视网膜下,导致视网膜变性。此外,我们生成了一种 LCN2 单克隆抗体,可中和单体和同源二聚体变体,并挽救 cKO 小鼠中的自噬和铁死亡活性。此外,该抗体通过视网膜电图评估挽救了 cKO 小鼠的视网膜功能。在这里,我们确定了一种分子途径,其中增加的 LCN2 引发 RPE 细胞的病理生理学变化,已知 RPE 细胞会引发干性 AMD 病理,从而为这种尚无治疗方法的疾病提供了可能的治疗策略。ACTB:肌动蛋白,β;Ad-GFP:腺病毒-绿色荧光蛋白;Ad-LCN2:腺病毒-脂联素 2;Ad-LCN2-GFP:腺病毒-LCN2-绿色荧光蛋白;LCN2AKT2:AKT 丝氨酸/苏氨酸激酶 2;AMBRA1:自噬和 beclin 1 调节因子 1;AMD:年龄相关性黄斑变性;ARPE19:成人视网膜色素上皮细胞系-19;Asp278:天冬氨酸 278;ATG4B:自噬相关 4B 半胱氨酸肽酶;ATG4C:自噬相关 4C 半胱氨酸肽酶;ATG7:自噬相关 7;ATG9B:自噬相关 9B;BLOC-1:溶酶体器官发生复合物 1;BLOC1S1:溶酶体器官发生复合物 1 亚基 1;C57BL/6J:C57 黑 6J;CGAS:环鸟苷酸-AMP 合酶;ChQ:氯喹;cKO:条件性敲除;Cys74:半胱氨酸 74;Dab2:DAB 衔接蛋白 2;Def:去铁胺;DHE:二氢乙锭;DMSO:二甲基亚砜;ERG:视网膜电图;FAC:三价铁铵柠檬酸;Fe:亚铁;FTH1:铁蛋白重链 1;GPX:谷胱甘肽过氧化物酶;GST:谷胱甘肽 S-转移酶;HO:过氧化氢;His280:组氨酸 280;IFNL/IFNλ:干扰素 lambda;IL1B/IL-1β:白细胞介素 1β;IS:内节;ITGB1/整合素β1:整合素亚基β1;KO:敲除;LC3-GST:微管相关蛋白 1 轻链 3-GST;C 末端融合;MAP1LC3/LC3:微管相关蛋白 1 轻链 3;LCN2:脂联素 2;mAb:单克隆抗体;MDA:丙二醛;MMP9:基质金属蛋白酶 9;NLRP3:NLR 家族吡咯烷域包含 3;NOD-SCID:非肥胖型糖尿病-严重联合免疫缺陷;OS:外节;PBS:磷酸盐缓冲盐水;PMEL/PMEL17:前黑素小体蛋白;RFP:红色荧光蛋白;rLCN2:重组 LCN2;ROS:活性氧;RPE SM:视网膜色素上皮细胞耗竭培养基;RPE:视网膜色素上皮细胞;RSL3:RAS 选择性致死;scRNAseq:单细胞 RNA 测序;SD-OCT:谱域光学相干断层扫描;shRNA:短发夹 RNA;SM:耗竭培养基;SOD1:超氧化物歧化酶 1;SQSTM1/p62:自噬体 1;STAT1:信号转导和转录激活因子 1;STING1:干扰素反应 cGAMP 相互作用体 1;TYR:酪氨酸酶;VCL: vinculin;WT:野生型。

相似文献

3
Treatments targeting autophagy ameliorate the age-related macular degeneration phenotype in mice lacking APOE (apolipoprotein E).
Autophagy. 2022 Oct;18(10):2368-2384. doi: 10.1080/15548627.2022.2034131. Epub 2022 Feb 23.
4
Autophagy in age-related macular degeneration.
Autophagy. 2023 Feb;19(2):388-400. doi: 10.1080/15548627.2022.2069437. Epub 2022 May 1.
7
Mitophagy initiates retrograde mitochondrial-nuclear signaling to guide retinal pigment cell heterogeneity.
Autophagy. 2023 Mar;19(3):966-983. doi: 10.1080/15548627.2022.2109286. Epub 2022 Aug 13.
8
9
How autophagy controls the intestinal epithelial barrier.
Autophagy. 2022 Jan;18(1):86-103. doi: 10.1080/15548627.2021.1909406. Epub 2021 Apr 27.
10
Role of AMBRA1 in mitophagy regulation: emerging evidence in aging-related diseases.
Autophagy. 2024 Dec;20(12):2602-2615. doi: 10.1080/15548627.2024.2389474. Epub 2024 Sep 2.

引用本文的文献

5
α-Lipoic acid mitigates age-related macular degeneration via ferroptosis: integrative multi-omics and network pharmacology.
Front Pharmacol. 2025 Jul 31;16:1626907. doi: 10.3389/fphar.2025.1626907. eCollection 2025.

本文引用的文献

1
Lipocalin-2: Structure, function, distribution and role in metabolic disorders.
Biomed Pharmacother. 2021 Oct;142:112002. doi: 10.1016/j.biopha.2021.112002. Epub 2021 Aug 27.
2
Tonic prime-boost of STING signalling mediates Niemann-Pick disease type C.
Nature. 2021 Aug;596(7873):570-575. doi: 10.1038/s41586-021-03762-2. Epub 2021 Jul 21.
4
Implication of ferroptosis in aging.
Cell Death Discov. 2021 Jun 28;7(1):149. doi: 10.1038/s41420-021-00553-6.
5
STING1 Promotes Ferroptosis Through MFN1/2-Dependent Mitochondrial Fusion.
Front Cell Dev Biol. 2021 Jun 14;9:698679. doi: 10.3389/fcell.2021.698679. eCollection 2021.
6
STING inhibitors target the cyclic dinucleotide binding pocket.
Proc Natl Acad Sci U S A. 2021 Jun 15;118(24). doi: 10.1073/pnas.2105465118.
7
The Role of the Effects of Autophagy on NLRP3 Inflammasome in Inflammatory Nervous System Diseases.
Front Cell Dev Biol. 2021 May 17;9:657478. doi: 10.3389/fcell.2021.657478. eCollection 2021.
8
Integrated analysis of multimodal single-cell data.
Cell. 2021 Jun 24;184(13):3573-3587.e29. doi: 10.1016/j.cell.2021.04.048. Epub 2021 May 31.
9
Autophagy in the retinal pigment epithelium: a new vision and future challenges.
FEBS J. 2022 Nov;289(22):7199-7212. doi: 10.1111/febs.16018. Epub 2021 May 31.
10
The cGAS-STING pathway as a therapeutic target in inflammatory diseases.
Nat Rev Immunol. 2021 Sep;21(9):548-569. doi: 10.1038/s41577-021-00524-z. Epub 2021 Apr 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验